Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Bioenerg ; 1865(4): 149506, 2024 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-39168228

RESUMEN

Mitochondrial uncoupling by small-molecule protonophores is generally accepted to proceed via transmembrane proton shuttling. The idea of facilitating this process by the adenine nucleotide translocase ANT originated primarily from the partial reversal of the DNP-induced mitochondrial uncoupling by the ANT inhibitor carboxyatractyloside (CATR). Recently, the sensitivity to CATR was also observed for the action of such potent OxPhos uncouplers as BAM15, SF6847, FCCP and niclosamide. Here, we report measurements of the CATR effect on the activity of a large number of conventional and novel uncouplers in isolated mammalian mitochondria. Despite the broad variety of chemical structures, CATR attenuated the uncoupling efficacy of all the anionic protonophores in rat heart mitochondria with high abundance of ANT, whereas the effect was much less pronounced or even absent, e.g. for SF6847, in rat liver mitochondria with low ANT content. The fact that the uncoupling action is tissue specific for a broad spectrum of anionic protonophores is highlighted here for the first time. Only with the cationic uncoupler ellipticine and the channel-forming peptide gramicidin A, no sensitivity to CATR was found even in rat heart mitochondria. By contrast, with the recently described ester-stabilized ylidic protonophores [Kirsanov et al. Bioelectrochemistry 2023], the stimulating effect of CATR was discovered both in liver and heart mitochondria.


Asunto(s)
Atractilósido , Mitocondrias Cardíacas , Mitocondrias Hepáticas , Ratas Wistar , Desacopladores , Animales , Ratas , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Desacopladores/farmacología , Atractilósido/análogos & derivados , Atractilósido/farmacología , Atractilósido/metabolismo , Masculino , Translocasas Mitocondriales de ADP y ATP/metabolismo , Ionóforos de Protónes/farmacología
2.
ACS Omega ; 9(10): 11551-11561, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38496966

RESUMEN

Mitochondrial uncouplers are actively sought as potential therapeutics. Here, we report the first successful synthesis of mitochondria-targeted derivatives of the highly potent uncoupler 3,5-ditert-butyl-4-hydroxybenzylidene-malononitrile (SF6847), bearing a cationic alkyl(triphenyl)phosphonium (TPP) group. As a key step of the synthesis, we used condensation of a ketophenol with malononitrile via the Knoevenagel reaction. SF-C5-TPP with a pentamethylene linker between SF6847 and TPP, stimulating respiration and collapsing membrane potential of rat liver mitochondria at submicromolar concentrations, proved to be the most effective uncoupler of the series. SF-C5-TPP showed pronounced protonophoric activity on a model planar bilayer lipid membrane. Importantly, SF-C5-TPP exhibited rather low toxicity in fibroblast cell culture, causing mitochondrial depolarization in cells at concentrations that only slightly affected cell viability. SF-C5-TPP was more effective in decreasing the mitochondrial membrane potential in the cell culture than SF6847, in contrast to the case of isolated mitochondria. Like other zwitterionic uncouplers, SF-C5-TPP inhibited the growth of Bacillus subtilis in the micromolar concentration range.

3.
Chembiochem ; 25(7): e202300848, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38353515

RESUMEN

We have recently discovered that ester-stabilized phosphorus ylides, resulting from deprotonation of a phosphonium salt such as [Ph3PCH2COOR], can transfer protons across artificial and biological membranes. To create more effective cationic protonophores, we synthesized similar phosphonium salts with one ((heptyloxycarbonylmethyl)(p-tolyl)bromide) or two ((butyloxycarbonylmethyl)(3,5-xylyl)osphonium bromide) methyl substituents in the phenyl groups. The methylation enormously augmented both protonophoric activity of the ylides on planar bilayer lipid membrane (BLM) and uncoupling of mammalian mitochondria, which correlated with strongly accelerated flip-flop of their cationic precursors across the BLM.


Asunto(s)
Mitocondrias Hepáticas , Fósforo , Animales , Mitocondrias Hepáticas/metabolismo , Fósforo/metabolismo , Ésteres/metabolismo , Bromuros/metabolismo , Metilación , Membrana Dobles de Lípidos/metabolismo , Mamíferos
4.
Arch Biochem Biophys ; 746: 109735, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37652149

RESUMEN

The popular fungicide fluazinam is known to exhibit an unusual cyclic pattern of the protonophoric uncoupling activity in isolated rat liver mitochondria (RLM), with membrane deenergization followed by spontaneous recoupling in the minute scale, which is associated with glutathione conjugation of fluazinam catalyzed by glutathione-S-transferase (GST). Here, we compare the fluazinam effect on RLM with that on rat kidney (RKM) and heart (RHM) mitochondria by monitoring three bioenergetic parameters: oxygen consumption rate, mitochondrial membrane potential and reduction of nucleotides. Only in RLM, the uncoupling activity of fluazinam was transient, i.e. disappeared in a few minutes, whereas in RKM and RHM it was stable in this time scale. We attribute this difference to the increased activity of mitochondrial GST in liver. We report data on the detection of glutathione-fluazinam conjugates by mass-spectrometry, thin layer chromatography and capillary electrophoresis after incubation of fluazinam with RLM but not with RKM, which supports the assumption of the tissue specificity of the conjugation.


Asunto(s)
Fungicidas Industriales , Animales , Ratas , Hígado , Mitocondrias , Glutatión , Glutatión Transferasa
5.
Biochim Biophys Acta Biomembr ; 1865(7): 184183, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37286154

RESUMEN

In order to determine the share of protonophoric activity in the uncoupling action of lipophilic cations a number of analogues of butyltriphenylphosphonium with substitutions in phenyl rings (C4TPP-X) were studied on isolated rat liver mitochondria and model lipid membranes. An increase in the rate of respiration and a decrease in the membrane potential of isolated mitochondria were observed for all the studied cations, the efficiency of these processes was significantly enhanced in the presence of fatty acids and correlated with the octanol-water partition coefficient of the cations. The ability of C4TPP-X cations to induce proton transport across the lipid membrane of liposomes loaded with a pH-sensitive fluorescent dye increased also with their lipophilicity and depended on the presence of palmitic acid in the liposome membrane. Of all the cations, only butyl[tri(3,5-dimethylphenyl)]phosphonium (C4TPP-diMe) was able to induce proton transport by the mechanism of formation of a cation-fatty acid ion pair on planar bilayer lipid membranes and liposomes. The rate of oxygen consumption by mitochondria in the presence of C4TPP-diMe increased to the maximum values corresponding to conventional uncouplers; for all other cations the maximum uncoupling rates were significantly lower. We assume that the studied cations of the C4TPP-X series, with the exception of C4TPP-diMe at low concentrations, cause nonspecific leak of ions through lipid model and biological membranes which is significantly enhanced in the presence of fatty acids.


Asunto(s)
Ácidos Grasos , Protones , Animales , Ratas , Ácidos Grasos/farmacología , Liposomas , Mitocondrias
6.
Biochim Biophys Acta Biomembr ; 1865(7): 184182, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37276926

RESUMEN

The ionophoric antibiotic salinomycin is in the phase of preclinical tests against several types of malignant tumors including breast cancer. Notwithstanding, the data on its ion selectivity, although being critical for its therapeutic activity, are rather scarce. In the present work, we studied the ability of salinomycin to exert cation/H+-exchange across artificial bilayer lipid membranes (BLM) by measuring electrical potential on planar BLM in the presence of a protonophore and fluorescence responses of the pH-sensitive dye pyranine entrapped in liposomes. The following order of ion selectivity was obtained by these two methods: K+ > Na+ > Rb+ > Cs+ > Li+. Measurements of the monovalent cation-induced quenching of fluorescence of thallium ions in methanol showed that salinomycin effectively binds potassium and calcium but poorly binds sodium and lithium ions. At high concentrations, salinomycin transports Ca2+ through membranes of liposomes and mitochondria, as measured by using the calcium-sensitive dye Fluo-5 N. The data obtained can be used in the mechanistic studies of the anti-tumor activity of salinomycin and its selective cytotoxicity towards cancer stem cells.


Asunto(s)
Antibacterianos , Liposomas , Antibacterianos/farmacología , Calcio , Membrana Dobles de Lípidos , Litio/metabolismo , Cationes , Sodio/metabolismo
7.
Antioxidants (Basel) ; 12(3)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36978894

RESUMEN

The homeostasis of the transmembrane potential of hydrogen ions in mitochondria is a prerequisite for the normal mitochondrial functioning. However, in different pathological conditions it is advisable to slightly reduce the membrane potential, while maintaining it at levels sufficient to produce ATP that will ensure the normal functioning of the cell. A number of chemical agents have been found to provide mild uncoupling; however, natural proteins residing in mitochondrial membrane can carry this mission, such as proteins from the UCP family, an adenine nucleotide translocator and a dicarboxylate carrier. In this study, we demonstrated that the butyl ester of rhodamine 19, C4R1, binds to the components of the mitochondrial ATP synthase complex due to electrostatic interaction and has a good uncoupling effect. The more hydrophobic derivative C12R1 binds poorly to mitochondria with less uncoupling activity. Mass spectrometry confirmed that C4R1 binds to the ß-subunit of mitochondrial ATP synthase and based on molecular docking, a C4R1 binding model was constructed suggesting the binding site on the interface between the α- and ß-subunits, close to the anionic amino acid residues of the ß-subunit. The association of the uncoupling effect with binding suggests that the ATP synthase complex can provide induced uncoupling.

8.
Bioelectrochemistry ; 150: 108369, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36638678

RESUMEN

Triphenylphosphonium ylides are commonly used as key intermediates in the Wittig reaction. Based on the known acidities of stabilized ylide precursors, we proposed that a methylene group adjacent to phosphorus in these compounds can ensure proton shuttling across lipid membranes. Here, we synthesized (decyloxycarbonylmethyl)triphenylphosphonium bromide (CMTPP-C10) by reaction of triphenylphosphine with decyl bromoacetate. This phosphonium salt precursor of the ester-stabilized phosphorus ylide along with its octyl (CMTPP-C8) and dodecyl (CMTPP-C12) analogues was found to be a carrier of protons in mitochondrial, chloroplast and artificial lipid membranes, suggesting that it can reversibly release hydrogen ions and diffuse through the membranes in both zwitterionic (ylide) and cationic forms. The CMTPP-C10-mediated electrical current across planar bilayer lipid membranes exhibited pronounced proton selectivity. Similar to conventional protonophores, known to uncouple electron transport and ATP synthesis, CMTPP-Cn (n = 8, 10, 12) stimulated mitochondrial respiration, while decreasing membrane potential, at micromolar concentrations, thereby showing the classical uncoupling activity in mitochondria. CMTPP-C12 also caused dissipation of transmembrane pH gradient on chloroplast membranes. Importantly, CMTPP-C10 exhibited substantially lower toxicity in cell culture, than C12TPP. Thus, we report the finding of a new class of ylide-type protonophores, which is of substantial interest due to promising therapeutic properties of uncouplers.


Asunto(s)
Fósforo , Protones , Ésteres/análisis , Ésteres/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias , Membrana Dobles de Lípidos/química
9.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36555847

RESUMEN

Usnic acid (UA), a unique lichen metabolite, is a protonophoric uncoupler of oxidative phosphorylation, widely known as a weight-loss dietary supplement. In contrast to conventional proton-shuttling mitochondrial uncouplers, UA was found to carry protons across lipid membranes via the induction of an electrogenic proton exchange for calcium or magnesium cations. Here, we evaluated the ability of various divalent metal cations to stimulate a proton transport through both planar and vesicular bilayer lipid membranes by measuring the transmembrane electrical current and fluorescence-detected pH gradient dissipation in pyranine-loaded liposomes, respectively. Thus, we obtained the following selectivity series of calcium, magnesium, zinc, manganese and copper cations: Zn2+ > Mn2+ > Mg2+ > Ca2+ >> Cu2+. Remarkably, Cu2+ appeared to suppress the UA-mediated proton transport in both lipid membrane systems. The data on the divalent metal cation/proton exchange were supported by circular dichroism spectroscopy of UA in the presence of the corresponding cations.


Asunto(s)
Calcio , Protones , Calcio/metabolismo , Magnesio/metabolismo , Mitocondrias Hepáticas/metabolismo , Membrana Dobles de Lípidos/química , Cationes/metabolismo , Cationes Bivalentes/metabolismo
10.
Biochemistry (Mosc) ; 87(8): 812-822, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36171648

RESUMEN

Pyrrolomycins C (Pyr_C) and D (Pyr_D) are antibiotics produced by Actinosporangium and Streptomyces. The mechanism of their antimicrobial activity consists in depolarization of bacterial membrane, leading to the suppression of bacterial bioenergetics through the uncoupling of oxidative phosphorylation, which is based on the protonophore action of these antibiotics [Valderrama et al., Antimicrob. Agents Chemother. (2019) 63, e01450]. Here, we studied the effect of pyrrolomycins on the isolated rat liver mitochondria. Pyr_C was found to be more active than Pyr_D and uncoupled mitochondria in the submicromolar concentration range, which was observed as the mitochondrial membrane depolarization and stimulation of mitochondrial respiration. In the case of mitoplasts (isolated mitochondria with impaired outer membrane integrity), the difference in the action of Pyr_C and Pyr_D was significantly less pronounced. By contrast, in inverted submitochondrial particles (SMPs), Pyr_D was more active as an uncoupler, which caused collapse of the membrane potential even at the nanomolar concentrations. The same ratio of the protonophoric activity of Pyr_D and Pyr_C was obtained by us on liposomes loaded with the pH indicator pyranine. The protonophore activity of Pyr_D in the planar bilayer lipid membranes (BLMs) was maximal at ~pH 9, i.e., at pH values close to pKa of this compound. Pyr_D functions as a typical anionic protonophore; its activity in the BLM could be reduced by the addition of the dipole modifier phloretin. The difference between the protonophore activity of Pyr_C and Pyr_D in the mitochondria and BLMs can be attributed to a higher ability of Pyr_C to penetrate the outer mitochondrial membrane.


Asunto(s)
Antibacterianos , Liposomas , Animales , Antibacterianos/química , Membrana Dobles de Lípidos/química , Mitocondrias , Mitocondrias Hepáticas/metabolismo , Floretina/metabolismo , Floretina/farmacología , Ratas , Desacopladores/farmacología
11.
Arch Biochem Biophys ; 728: 109366, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35878680

RESUMEN

An impressive body of evidence has been accumulated now on sound beneficial effects of mitochondrial uncouplers in struggling with the most dangerous pathologies such as cancer, infective diseases, neurodegeneration and obesity. To increase their efficacy while gaining further insight in the mechanism of the uncoupling action has been remaining a challenge. Encouraged by our previous promising results on lipophilic derivatives of 7-hydroxycoumarin-4-acetic acid (UB-4 esters), here, we use a 7-hydroxycoumarin-3-carboxylic acid scaffold to synthesize a new series of 7-hydroxycoumarin (umbelliferone, UB)-derived uncouplers of oxidative phosphorylation - alkyl esters of umbelliferone-3-carboxylic acid (UB-3 esters) with varying carbon chain length. Compared to the UB-4 derivatives, UB-3 esters proved to be stronger uncouplers: the most effective of them caused a pronounced increase in the respiration rate of isolated rat heart mitochondria (RHM) at submicromolar concentrations. Both of these series of UB derivatives exhibited a striking difference between their uncoupling patterns in mitochondria isolated from liver and heart or kidney, namely: a pronounced but transient decrease in membrane potential, followed by its recovery, was observed after the addition of these compounds to isolated rat liver mitochondria (RLM), while the depolarization of RHM and rat kidney mitochondria (RKM) was rather stable under the same conditions. Interestingly, partial reversal of this depolarization in RHM and RKM was caused by carboxyatractyloside, an inhibitor of ATP/ADP translocase, thereby pointing to the involvement of this mitochondrial membrane protein in the uncoupling activity of both UB-3 and UB-4 esters. The fast membrane potential recovery in RLM uncoupled by the addition of the UB esters was apparently associated with hydrolysis of these compounds, catalyzed by mitochondrial aldehyde dehydrogenase (ALDH2), being in high abundance in liver compared to other tissues. Protonophoric properties of the UB derivatives in isolated mitochondria were confirmed by measurements of RHM swelling in the presence of potassium acetate. In model bilayer lipid membranes (liposomes), proton-carrying activity of UB-3 esters was demonstrated by measuring fluorescence response of the pH-dependent dye pyranine. Electrophysiological experiments on identified neurons from Lymnaea stagnalis demonstrated low neurotoxicity of UB-3 esters. Resazurin-based cell viability assay showed low toxicity of UB-3 esters to HEK293 cells and primary human fibroblasts. Thus, the present results enable us to consider UB-3 esters as effective tissue-specific protonophoric mitochondrial uncouplers.


Asunto(s)
Translocasas Mitocondriales de ADP y ATP , Fosforilación Oxidativa , Adenosina Trifosfato , Aldehído Deshidrogenasa Mitocondrial , Animales , Ésteres , Células HEK293 , Humanos , Mitocondrias Cardíacas , Mitocondrias Hepáticas , Ratas , Umbeliferonas , Desacopladores
12.
Biochim Biophys Acta Bioenerg ; 1863(7): 148594, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35850263

RESUMEN

6-Ketocholestanol (kCh) is known as a mitochondrial recoupler, i.e. it abolishes uncoupling of mitochondria by such potent agents as carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 3,5-di(tert-butyl)-4-hydroxybenzylidenemalononitril (SF6847) [Starkov et al., 1997]. Here, we report data on the kCh-induced inhibition of both NADH-oxidase and NADH-ubiquinone oxidoreductase activities of the respiratory complex I in bovine heart submitochondrial particles (SMP). Based on the absence of such inhibition with hexaammineruthenium (III) (HAR) as the complex I electron acceptor, the kCh effect could be associated with the ubiquinone-binding centre of this respiratory enzyme. In isolated rat liver mitochondria (RLM), kCh inhibited oxygen consumption with the glutamate/malate, substrates of NAD-linked dehydrogenases, while no inhibition of RLM respiration was observed with succinate, in agreement with the absence of the kCh effect on the succinate oxidase activity in SMP. Three kCh analogs (cholesterol, 6α-hydroxycholesterol, and 5α,6α-epoxycholesterol) exhibited no effect on the NADH oxidase activities in both SMP and RLM. Importantly, the kCh analogs were ineffective in the recoupling of RLM treated with CCCP or SF6847. Therefore, interaction of kCh with the complex I may be involved in the kCh-mediated mitochondrial recoupling.


Asunto(s)
Complejo I de Transporte de Electrón , Mitocondrias , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Bovinos , Cetocolesteroles/farmacología , Ratas
13.
Bioelectrochemistry ; 145: 108089, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35299152

RESUMEN

Salinomycin (SAL), a polyether antibiotic exerting K+/H+-exchange on cellular membranes, effectively kills cancer stem cells. A series of cationic triphenylphosphonium (TPP+)-linked SAL derivatives were synthesized aiming to render them mitochondria-targeted. Remarkably, attaching a TPP+ moiety via a triazole linker at the C-20 position of SAL (compound 5) preserved the ion carrier potency of the antibiotic, while analogs with TPP+ linked at the C-1 position of SAL (6, 8) were ineffective. On planar bilayer lipid membranes (BLM), the SAL analogs 6 and 8 exhibited slow electrical current relaxation upon a voltage jump, similar to previously studied alkyl-TPP compounds. However, 5 demonstrated much faster current relaxation, which suggested its high permeability through BLM resulting in its pronounced potency to transport potassium and hydrogen ions across both artificial (liposomal) and mitochondrial membranes. SAL and 5 did not induce a steady-state electrical current through the planar lipid bilayer, thereby confirming that the transport mechanism is the electrically silent K+/H+ exchange. The ion exchange mediated by 5 in energized mitochondria was more active than that caused by SAL, which was apparently due to accumulation of 5 in mitochondria. Thus, compound 5 can be regarded as a promising lead compound for testing anticancer and antimicrobial activity.


Asunto(s)
Membrana Dobles de Lípidos , Piranos , Antibacterianos/farmacología , Mitocondrias , Piranos/farmacología
14.
Bioelectrochemistry ; 145: 108081, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35131667

RESUMEN

A great variety of coumarin-related compounds, both natural and synthetic, being often brightly fluorescent, have shown themselves beneficial in medicine for both therapeutic and imaging purposes. Here, in search for effective uncouplers of oxidative phosphorylation, we synthesized a series of 7-hydroxycoumarin (umbelliferone, UB) derivatives combining rather high membrane affinity with the presence of a hydroxyl group deprotonable at physiological pH - alkyl esters of umbelliferone-4-acetic acid (UB-4 esters) differing in alkyl chain length. Addition of UB-4 esters to isolated rat liver mitochondria (RLM) resulted in their rapid depolarization, unexpectedly followed by membrane potential recovery on a minute time scale. According to TLC and HPLC data, incubation of RLM with UB-4 esters caused their hydrolysis, which led to disappearance of the uncoupling activity (recoupling). Both mitochondrial recoupling and hydrolysis of UB-4 esters were suppressed by inhibitors of mitochondrial aldehyde dehydrogenase (ALDH2), disulfiram and daidzin, thus pointing to the involvement of this enzyme in the recoupling of RLM incubated with UB-4 esters. The protonophoric mechanism of mitochondrial uncoupling by UB-4 esters was proved in experiments with artificial bilayer lipid membranes (BLM): these compounds induced proton-selective electrical current across planar BLM and caused dissipation of pH gradient on liposomes. UB-4 esters showed antibacterial activity against Bacillus subtilis, Staphylococcus aureus and Mycobacterium smegmatis.


Asunto(s)
Ésteres , Mitocondrias Hepáticas , Ácido Acético/farmacología , Aldehído Deshidrogenasa Mitocondrial , Animales , Ésteres/farmacología , Membrana Dobles de Lípidos/química , Ratas , Umbeliferonas/farmacología , Desacopladores/farmacología
15.
J Phys Chem B ; 126(2): 412-422, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34994564

RESUMEN

The alkyltriphenylphosphonium (TPP) group is the most widely used vector targeted to mitochondria. Previously, the length of the alkyl linker was varied as well as structural modifications in the TPP phenyl rings to obtain the optimal therapeutic effect of a pharmacophore conjugated with a lipophilic cation. In the present work, we synthesized butyltriphenylphosphonium cations halogenated and methylated in phenyl rings (C4TPP-X) and measured electrical current through a planar lipid bilayer in the presence of C4TPP-X. The permeability of C4TPP-X varied in the range of 6 orders of magnitude and correlates well with the previously measured translocation rate constant for dodecyltriphenylphosphonium analogues. The partition coefficient of the butyltriphenylphosphonium analogues obtained by calculating the difference in the free energy of cation solvation in water and octane using quantum chemical methods correlates well with the permeability values. Using an ion-selective electrode, a lower degree of accumulation of analogues with halogenated phenyl groups was found on isolated mitochondria of rat liver, which is in agreement with their permeability decrease. Our results indicate the translocation of the butyltriphenylphosphonium cations across the hydrophobic membrane core as rate-limiting stage in the permeability process rather than their binding/release to/from the membrane.


Asunto(s)
Membrana Dobles de Lípidos , Compuestos Onio , Animales , Cationes/química , Membrana Dobles de Lípidos/química , Compuestos Onio/química , Compuestos Organofosforados , Permeabilidad , Ratas
16.
Biomolecules ; 11(8)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34439844

RESUMEN

2,4-Dinitrophenol (DNP) is a classic uncoupler of oxidative phosphorylation in mitochondria which is still used in "diet pills", despite its high toxicity and lack of antidotes. DNP increases the proton current through pure lipid membranes, similar to other chemical uncouplers. However, the molecular mechanism of its action in the mitochondria is far from being understood. The sensitivity of DNP's uncoupling action in mitochondria to carboxyatractyloside, a specific inhibitor of adenine nucleotide translocase (ANT), suggests the involvement of ANT and probably other mitochondrial proton-transporting proteins in the DNP's protonophoric activity. To test this hypothesis, we investigated the contribution of recombinant ANT1 and the uncoupling proteins UCP1-UCP3 to DNP-mediated proton leakage using the well-defined model of planar bilayer lipid membranes. All four proteins significantly enhanced the protonophoric effect of DNP. Notably, only long-chain free fatty acids were previously shown to be co-factors of UCPs and ANT1. Using site-directed mutagenesis and molecular dynamics simulations, we showed that arginine 79 of ANT1 is crucial for the DNP-mediated increase of membrane conductance, implying that this amino acid participates in DNP binding to ANT1.


Asunto(s)
2,4-Dinitrofenol/farmacología , Membrana Dobles de Lípidos/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Animales , Ratones , Ratas
17.
Bioelectrochemistry ; 137: 107673, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32971482

RESUMEN

Small molecules capable of uncoupling respiration and ATP synthesis in mitochondria are protective towards various cell malfunctions. Recently (2-fluorophenyl){6-[(2-fluorophenyl)amino](1,2,5-oxadiazolo[3,4-e]pyrazin-5-yl)}amine (BAM15), a new compound of this type, has become popular as a potent mitochondria-selective depolarizing agent producing minimal adverse effects. To validate protonophoric mechanism of BAM15 action, we examined its behavior in bilayer lipid membranes (BLM). BAM15 proved to be a typical anionic protonophore with the activity on planar membranes being suppressed upon decreasing membrane dipole potential. In both planar BLM and liposomes, BAM15 induced proton conductance with the potency close to that of the classical protonophoric uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP). In isolated rat liver mitochondria (RLM), BAM15 caused membrane potential collapse, increased respiration rate and induced Ca2+ efflux at concentrations slightly higher than those for CCCP. Surprisingly, the uncoupling action of BAM15 on isolated RLM, in contrast to that of CCCP, was partially reversed by carboxyatractyloside (CATR), an inhibitor of adenine nucleotide translocase, thereby indicating involvement of this protein in the BAM15-induced uncoupling. BAM15 inhibited growth of Bacillus subtilis at micromolar concentrations. In electrophysiological experiments on molluscan neurons, BAM15 caused plasma membrane depolarization and suppression of electrical activity, but the effect developed more slowly than that of CCCP.


Asunto(s)
Bacterias/efectos de los fármacos , Membrana Dobles de Lípidos/química , Liposomas/química , Mitocondrias Hepáticas/efectos de los fármacos , Neuronas/efectos de los fármacos , Protones , Desacopladores/farmacología , Animales , Bacterias/crecimiento & desarrollo , Calcio/metabolismo , Lymnaea , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Neuronas/fisiología , Ratas
18.
PLoS One ; 15(12): e0244499, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33378414

RESUMEN

The synthesis of a mitochondria-targeted derivative of the classical mitochondrial uncoupler carbonyl cyanide-m-chlorophenylhydrazone (CCCP) by alkoxy substitution of CCCP with n-decyl(triphenyl)phosphonium cation yielded mitoCCCP, which was able to inhibit the uncoupling action of CCCP, tyrphostin A9 and niclosamide on rat liver mitochondria, but not that of 2,4-dinitrophenol, at a concentration of 1-2 µM. MitoCCCP did not uncouple mitochondria by itself at these concentrations, although it exhibited uncoupling action at tens of micromolar concentrations. Thus, mitoCCCP appeared to be a more effective mitochondrial recoupler than 6-ketocholestanol. Both mitoCCCP and 6-ketocholestanol did not inhibit the protonophoric activity of CCCP in artificial bilayer lipid membranes, which might compromise the simple proton-shuttling mechanism of the uncoupling activity on mitochondria.


Asunto(s)
Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Acoplamiento Oxidativo/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/análogos & derivados , Bovinos , Cetocolesteroles/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mitocondrias Hepáticas/metabolismo , Ratas , Desacopladores/farmacología
19.
Biochem Biophys Res Commun ; 530(1): 29-34, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828301

RESUMEN

Bicarbonate has been known to modulate activities of various mitochondrial enzymes such as ATPase and soluble adenylyl cyclase. Here, we found that the ability of conventional protonophoric uncouplers, such as 2,4-dinitrophenol (DNP), carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), but not that of the new popular uncoupler BAM15, to decrease mitochondrial membrane potential was significantly diminished in the presence of millimolar concentrations of bicarbonate. Thus, the depolarizing activity of DNP and FCCP in mitochondria could be sensitive to the local concentration of bicarbonate in cells and tissues. However, bicarbonate could not restore the ATP synthesis suppressed by DNP or CCCP in mitochondria. Bicarbonate neither altered the depolarizing action of DNP and FCCP on proteoliposomes with reconstituted cytochrome c oxidase, nor affected the protonophoric activity of DNP and FCCP in artificial lipid membranes as measured with pyranine-loaded liposomes, thereby showing that the bicarbonate-induced reversal of the depolarizing action of DNP and FCCP on mitochondria did not result from direct interaction of bicarbonate with the uncouplers.


Asunto(s)
Bicarbonatos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Desacopladores/farmacología , 2,4-Dinitrofenol/farmacología , Adenosina Trifosfato/metabolismo , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Mitocondrias Hepáticas/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Ratas
20.
Biochim Biophys Acta Biomembr ; 1862(9): 183303, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32251647

RESUMEN

Usnic acid (UA), a secondary lichen metabolite, has long been popular as one of natural fat-burning dietary supplements. Similar to 2,4-dinitrophenol, the weight-loss effect of UA is assumed to be associated with its protonophoric uncoupling activity. Recently, we have shown that the ability of UA to shuttle protons across both mitochondrial and artificial membranes is strongly modulated by the presence of calcium ions in the medium. Here, by using fluorescent probes, we studied the calcium-transporting capacity of usnic acid in a variety of membrane systems comprising liposomes, isolated rat liver mitochondria, erythrocytes and rat basophilic leukemia cell culture (RBL-2H3). At concentrations of tens of micromoles, UA appeared to be able to carry calcium ions across membranes in all the systems studied. Similar to the calcium ionophore A23187, UA caused degranulation of RBL-2H3 cells. Therefore, UA, being a protonophoric uncoupler of oxidative phosphorylation, at higher concentrations manifests itself as a calcium ionophore, which could be relevant to its overdose toxicity in humans and also its phytotoxicity.


Asunto(s)
Benzofuranos/química , Ionóforos de Calcio/química , Transporte Iónico/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , 2,4-Dinitrofenol/química , Animales , Benzofuranos/farmacología , Calcimicina/farmacología , Ionóforos de Calcio/farmacología , Línea Celular Tumoral , Eritrocitos/efectos de los fármacos , Humanos , Líquenes/química , Mitocondrias/efectos de los fármacos , Protones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA