Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Rhythms ; 35(1): 45-57, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31619104

RESUMEN

The circadian system regulates daily rhythms of physiology and behavior. Although extraordinary advances have been made to elucidate the brain mechanisms underlying the circadian system in nocturnal species, less is known in diurnal species. Recent studies have shown that retinorecipient brain areas such as the intergeniculate leaflet (IGL) and olivary pretectal nucleus (OPT) are critical for the display of normal patterns of daily activity in diurnal grass rats (Arvicanthis niloticus). Specifically, grass rats with IGL and OPT lesions respond to light in similar ways to intact nocturnal animals. Importantly, both the IGL and OPT project to one another in nocturnal species, and there is evidence that these 2 brain regions also project to the superior colliculus (SC). The SC receives direct retinal input, is involved in the triggering of rapid eye movement sleep in nocturnal rats, and is disproportionately large in the diurnal grass rat. The objective of the current study was to use diurnal grass rats to test the hypothesis that the SC is critical for the expression of diurnal behavior and physiology. We performed bilateral electrolytic lesions of the SC in female grass rats to examine behavioral patterns and acute responses to light. Most grass rats with SC lesions expressed significantly reduced activity in the presence of light. Exposing these grass rats to constant darkness reinstated activity levels during the subjective day, suggesting that light masks their ability to display a diurnal activity profile in 12:12 LD. Altogether, our data suggest that the SC is critical for maintaining normal responses to light in female grass rats.


Asunto(s)
Murinae/fisiología , Estimulación Luminosa , Colículos Superiores/patología , Colículos Superiores/efectos de la radiación , Animales , Ritmo Circadiano , Oscuridad , Femenino
2.
J Comp Psychol ; 133(2): 215-222, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30394785

RESUMEN

Environmental conditions, such as the light-dark cycle and temperature, affect the display of circadian rhythmicity and locomotor activity patterns in mammals. Here, we tested the hypothesis that manipulating these environmental conditions would affect wheel-running activity patterns in a diurnal rodent, the Nile grass rat (Arvicanthis niloticus). Grass rats are diurnal in the field, however, a subset switch from a day-active pattern to a night-active pattern of activity after the introduction of a running wheel. The mechanism of this chronotype switch remains largely unknown. In the present study, grass rats were presented with running wheels in 12:12 light-dark conditions. First, subjects were exposed to 25 °C during the day and 21 °C at night, which resulted in 100% of grass rats expressing diurnal behavior. Subjects were then exposed to manipulations of elevated ambient temperature, which resulted in a significant reduction in wheel-running activity. Reducing ambient temperature below 21 °C, however, did not disrupt the expression of diurnality or overall activity. Next, lighting intensity was reduced, which resulted in a switch from a diurnal to a nocturnal chronotype in a subset of animals and reduced overall wheel-running activity. Upon return to baseline lighting intensity, patterns of diurnal activity were restored. Altogether, increases in ambient temperature and decreases in lighting intensity significantly reduced overall wheel-running activity. Importantly, dim light resulted in a temporal niche switch in a subset of grass rats, suggesting a critical role for lighting intensity on the expression of wheel-running activity patterns. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Asunto(s)
Conducta Animal/fisiología , Ritmo Circadiano/fisiología , Actividad Motora/fisiología , Fotoperiodo , Temperatura , Animales , Muridae
3.
Neuroscience ; 355: 225-237, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28499968

RESUMEN

The olivary pretectal nucleus (OPT) is a midbrain structure that receives reciprocal bilateral retinal projections, is involved in the pupillary light reflex, and connects reciprocally with the intergeniculate leaflet (IGL), a retinorecipient brain region that mediates behavioral responses to light pulses (i.e., masking) in diurnal Nile grass rats. Here, we lesioned the OPT and evaluated behavioral responses in grass rats to various lighting conditions, as well as their anxiety-like responses to light exposure. While control grass rats remained diurnal, grass rats with OPT lesions exhibited a more night-active pattern under 12h:12h light-dark (LD) conditions. However, when placed in constant darkness, OPT-lesioned grass rats became more active during their subjective day, suggesting that an exaggerated masking response to light may be responsible for the effect of OPT lesions on locomotor activity in LD. To test this hypothesis, we presented dark and light pulses to controls and grass rats with OPT lesions; controls increased their activity in response to light, whereas those with OPT lesions significantly increased activity in response to darkness. Further, when placed in a 7-h ultradian LD cycle, animals with OPT lesions were more active during darkness than controls. OPT lesions also abolished the pupillary light reflex, but did not affect anxiety-like behaviors. Finally, in animals with OPT lesions, light did not induce Fos expression in the ventrolateral geniculate nucleus, as it did in controls. Altogether, these results suggest that masking responses to light and darkness are dependent upon nuclei within the subcortical visual shell in grass rats.


Asunto(s)
Adaptación Ocular/fisiología , Ritmo Circadiano/fisiología , Conducta Exploratoria/fisiología , Área Pretectal/fisiología , Pupila/fisiología , Reflejo/fisiología , Análisis de Varianza , Animales , Ansiedad/fisiopatología , Oscuridad , Modelos Animales de Enfermedad , Femenino , Luz , Proteínas Oncogénicas v-fos/metabolismo , Enmascaramiento Perceptual/fisiología , Estimulación Luminosa , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA