Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Plant Pathol ; 151(4): 947-960, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30996524

RESUMEN

Phytophthora infestans is the causal organism of potato late blight, the most important disease in potato, the second most important arable crop in Europe. The P. infestans population in Europe is well known for its sudden changes in composition. Currently it is composed of a wide variety of genotypes, some of which are dominant clonal lines while others are rare or even unique to a year or location. Fungicides play a crucial role in the integrated control of late blight. Since its introduction in the Netherlands in 1992, fluazinam has been used in late blight control strategies in ware and starch potatoes. It has a broad spectrum of activity and is effective against a range of diseases including potato late blight. Fluazinam interrupts the pathogen cell's energy production process by an uncoupling effect on oxidative phosphorylation. It is considered to have a low resistance risk. Until recently, reduced efficacy against fluazinam was not detected in P. infestans surveys in Europe. In this paper we present the finding of a new clonal lineage (EU_33_A2) of P. infestans in the Netherlands and the reduced efficacy of fluazinam to control one of the EU_33_A2 isolates in field experiments carried out in 2011 and 2015 under high disease pressure. The potential effects of this finding on practical late blight control strategies are discussed.

2.
G3 (Bethesda) ; 2(12): 1529-40, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23275876

RESUMEN

For a comprehensive survey of the structure and dynamics of the Dutch Phytophthora infestans population, 652 P. infestans isolates were collected from commercial potato fields in the Netherlands during the 10-year period 2000-2009. Genotyping was performed using 12 highly informative microsatellite markers and mitochondrial haplotypes. In addition, for each isolate, the mating type was determined. STRUCTURE analysis grouped the 322 identified genotypes in three clusters. Cluster 1 consists of a single clonal lineage NL-001, known as "Blue_13"; all isolates in this cluster have the A2 mating type and the Ia mitochondrial haplotype. Clusters 2 and 3 display a more elaborate substructure containing many unique genotypes. In Cluster 3, several distinct clonal lineages were also identified. This survey witnesses that the Dutch population underwent dramatic changes in the 10 years under study. The most notable change was the emergence and spread of A2 mating type strain NL-001 (or "Blue_13"). The results emphasize the importance of the sexual cycle in generating genetic diversity and the importance of the asexual cycle as the propagation and dispersal mechanism for successful genotypes. Isolates were also screened for absence of the Avrblb1/ipiO class I gene, which is indicative for virulence on Rpi-blb1. This is also the first report of Rpi-blb1 breakers in the Netherlands. Superimposing the virulence screening on the SSR genetic backbone indicates that lack the Avrblb1/ipiO class I gene only occurred in sexual progeny. So far, the asexual spread of the virulent isolates identified has been limited.


Asunto(s)
Ligamiento Genético , Phytophthora infestans/genética , Análisis por Conglomerados , ADN Mitocondrial/genética , Genotipo , Haplotipos , Repeticiones de Microsatélite , Países Bajos , Phytophthora infestans/patogenicidad , Polimorfismo Genético , Dinámica Poblacional , Solanum tuberosum/parasitología , Virulencia/genética
3.
Phytopathology ; 99(7): 887-95, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19522587

RESUMEN

Opportunities exist to improve decision support systems through the use of dispersal information gained from epidemiological research. However, dispersal and demographic information is often fragmentary in plant pathology, and this uncertainty creates a risk of inappropriate action whenever such information is used as a basis for decision making. In this article, a scenario-based simulation approach is used to evaluate crop and economic risks and benefits in the use of dispersal information for decision making using the potato late blight pathosystem (Phytophthora infestans-Solanum tuberosum) as a case study. A recently validated spatiotemporal potato late blight model was coupled to submodels for crop growth, tuber dry matter production, and fungicide efficacy. The yield response of a range of management scenarios to a single influx of primary inoculum (the initial spore load) was calculated. Damage curves (relative yield loss versus initial spore load) from a range of combinations of varietal susceptibility and fungicide treatments were used to classify the various management scenarios as either sensitive to initial spore load or tolerant to initial spore load, thus identifying where a high degree of accuracy would be required in dispersal information for appropriate decision making, and where a greater degree of uncertainty could be tolerated. General epidemics, resulting from spatially homogeneous initial spore loads, responded more strongly to the size of the initial spore load than focal epidemics, resulting from an initial spot infection. Susceptible cultivars responded with sizeable yield losses even at low levels of initial spore load, regardless of the fungicide management regime used. These results indicated that, for susceptible cultivars (late cultivars in particular), the degree of accuracy that would be required in dispersal information for appropriate decision making is unlikely to be practically attainable. The results also indicated that, contrary to "folk wisdom," spore loads of a few hundred spores per square meter do not lead to appreciable crop loss in resistant cultivars and are therefore acceptable. We conclude that scope exists for including dispersal information in decision making for potato late blight with resistant potato cultivars but not for susceptible cultivars. The modeling framework used in this study can be extended to investigate the scope for inclusion of dispersal information in decision support for other aerially transmitted pathogens.


Asunto(s)
Microbiología del Aire , Técnicas de Apoyo para la Decisión , Fungicidas Industriales/farmacología , Difusión de la Información , Phytophthora infestans/fisiología , Biomasa , Modelos Biológicos , Phytophthora infestans/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/microbiología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/fisiología
4.
Phytopathology ; 99(3): 290-300, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19203282

RESUMEN

A spatiotemporal, integrodifference equation model of the potato late blight pathosystem is described. Formerly, the model was used in a theoretical context to analyze and predict epidemic dynamics in spatially heterogeneous mixtures of host genotypes. The model has now been modified to reflect a research interest in interactions between genotype, environment, landscape, and management. New parameter values describing host-pathogen interactions were determined and new environment-pathogen relationships included. A new analytical equation describing lesion expansion and associated necrosis has also been developed. These changes prompted a need to assess the quality of model predictions. Cultivar-isolate-specific interactions were characterized in the model using three quantitative components of resistance: infection efficiency, lesion growth rate, and sporulation intensity. These were measured on detached potato leaflets in the laboratory. Results of a sensitivity analysis illuminate the effect of different quantitative components of resistance and initial conditions on the shape of disease progress curves. Using the resistance components, the epidemic process of lesion expansion was separated from the epidemic process of lesion propagation providing two reference curves for diagnosing observed epidemics. The spatial component of the model was evaluated graphically in order to determine if realistic rates of focal expansion for potato late blight are produced. In accordance with theory, the radius of a predicted focus increased linearly with time and a constant focal velocity was reached that compared well with published experimental data. Validation data for the temporal model came from 20 late blight epidemics observed in field trials conducted in the Netherlands in 2002 and 2004. The field data and model were compared visually using disease progress curves, and numerically through a comparison of predicted and observed t(5) and t(50) points (time in days until 5 and 50% disease severity is reached, respectively) and relative areas under the disease progress curve values. Temporal model predictions were in close agreement with observational data and the ability of the model to translate measured resistance components, weather data, and initial conditions into realistic disease progress curves without the need for calibration confirms its utility as a tool in the analysis and diagnosis of epidemics.


Asunto(s)
Interacciones Huésped-Patógeno , Modelos Biológicos , Phytophthora infestans/fisiología , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Phytophthora infestans/patogenicidad
5.
Phytopathology ; 95(4): 328-38, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18943033

RESUMEN

ABSTRACT A spatiotemporal/integro-difference equation model was developed and utilized to study the progress of epidemics in spatially heterogeneous mixtures of susceptible and resistant host plants. The effects of different scales and patterns of host genotypes on the development of focal and general epidemics were investigated using potato late blight as a case study. Two different radial Laplace kernels and a two-dimensional Gaussian kernel were used for modeling the dispersal of spores. An analytical expression for the apparent infection rate, r, in general epidemics was tested by comparison with dynamic simulations. A genotype connectivity parameter, q, was introduced into the formula for r. This parameter quantifies the probability of pathogen inoculum produced on a certain host genotype unit reaching the same or another unit of the same genotype. The analytical expression for the apparent infection rate provided accurate predictions of realized r in the simulations of general epidemics. The relationship between r and the radial velocity of focus expansion, c, in focal epidemics, was linear in accordance with theory for homogeneous genotype mixtures. The findings suggest that genotype mixtures that are effective in reducing general epidemics of Phytophthora infestans will likewise curtail focal epidemics and vice versa.

6.
Phytopathology ; 95(4): 439-48, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18943048

RESUMEN

ABSTRACT A spatially explicit model describing saprophytic colonization of dead cyclamen leaf tissue by the plant-pathogenic fungus Botrytis cinerea and the saprophytic fungal antagonist Ulocladium atrum was constructed. Both fungi explore the leaf and utilize the resources it provides. Leaf tissue is represented by a two-dimensional grid of square grid cells. Fungal competition within grid cells is modeled using Lotka-Volterra equations. Spatial expansion into neighboring grid cells is assumed proportional to the mycelial density gradient between donor and receptor cell. Established fungal biomass is immobile. Radial growth rates of B. cinerea and U. atrum in dead cyclamen leaf tissue were measured to determine parameters describing the spatial dynamics of the fungi. At temperatures from 5 to 25 degrees C, B. cinerea colonies expanded twice as rapidly as U. atrum colonies. In practical biological control, the slower colonization of space by U. atrum thus needs to be compensated by a sufficiently dense and even distribution of conidia on the leaf. Simulation results confirm the importance of spatial expansion to the outcome of the competitive interaction between B. cinerea and U. atrum at leaf scale. A sensitivity analysis further emphasized the importance of a uniform high density cover of vital U. atrum conidia on target leaves.

7.
Phytopathology ; 89(10): 868-76, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18944729

RESUMEN

ABSTRACT A technique was developed to localize and quantify the internal mycelial colonization of necrotic leaf tissue of cyclamen (Cyclamen persicum) or lily (Lilium) by pathogenic Botrytis spp. and the antagonist Ulocladium atrum. This technique allows investigation of competitive substrate colonization by both fungi, which is a key process for biological control of Botrytis spp. by U. atrum. A combination of differential fluorescent labeling and image analysis was applied on cryostat sections of necrotic leaf tissue. Botrytis mycelium was labeled specifically by indirect immunofluorescence using a monoclonal antibody specific for Botrytis spp. And an antimouse fluorescein conjugate. Wheat germ agglutinin conjugated to the fluorochrome TRITC was used to label mycelium of both fungi. Image analysis was used to measure the relative surface area of the cryostat section covered by fluorescing hyphae of Botrytis spp. and by fluorescing hyphae of both fungi. A mathematical conversion was derived and used to calculate the relative mycelial volume of each fungal species in the necrotic tissue based on the measured relative surface areas. Temporal aspects of substrate colonization were studied in a short time series. An analysis of components of variance provided insight into spatial colonization patterns for the fungal species involved and allowed the design of efficient sampling strategies for future experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA