Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22270637

RESUMEN

The Pfizer COVID-19 vaccine is associated with increased myocarditis incidence. Constantly evolving evidence regarding incidence and case fatality of COVID-19 and myocarditis related to infection or vaccination, creates challenge for risk-benefit analysis of vaccination programs. Challenges are complicated further by emerging evidence of waning vaccine effectiveness, and variable effectiveness against variants. Here, we build on previous work on the COVID-19 Risk Calculator (CoRiCal) by integrating Australian and international data to inform a Bayesian network that calculates probabilities of outcomes for the Delta variant under different scenarios of Pfizer COVID-19 vaccine coverage, age groups ([≤]12 years), sex, community transmission intensity and vaccine effectiveness. The model estimates that in a population where 5% were unvaccinated, 5% had one dose, 60% had two doses and 30% had three doses, the probabilities of developing and dying from COVID-19-related myocarditis were 239-5847 and 1430-384,684 times higher (depending on age and sex), respectively, than developing vaccine-associated myocarditis. For one million people with this vaccine coverage, where transmission intensity was equivalent to 10% chance of infection over two months, 68,813 symptomatic COVID-19 cases and 981 deaths would be prevented, with 42 and 16 expected cases of vaccine-associated myocarditis in males and females, respectively. The model may be updated to include emerging best evidence, data pertinent to different countries or vaccines, and other outcomes such as long COVID.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21265588

RESUMEN

Uncertainty surrounding the risk of developing and dying from Thrombosis and Thromobocytopenia Syndrome (TTS) associated with the AstraZeneca (AZ) COVID-19 vaccine may contribute to vaccine hesitancy. A model is urgently needed to combine and effectively communicate the existing evidence on the risks versus benefits of the AZ vaccine. We developed a Bayesian network to consolidate the existing evidence on risks and benefits of the AZ vaccine, and parameterised the model using data from a range of empirical studies, government reports, and expert advisory groups. Expert judgement was used to interpret the available evidence and determine the structure of the model, relevant variables, data to be included, and how these data were used to inform the model. The model can be used as a decision support tool to generate scenarios based on age, sex, virus variant and community transmission rates, making it a useful for individuals, clinicians, and researchers to assess the chances of different health outcomes. Model outputs include the risk of dying from TTS following the AZ COVID-19 vaccine, the risk of dying from COVID-19 or COVID-19-associated atypical severe blood clots under different scenarios. Although the model is focused on Australia, it can be easily adaptable to international settings by re-parameterising it with local data. This paper provides detailed description of the model-building methodology, which can used to expand the scope of the model to include other COVID-19 vaccines, booster doses, comorbidities and other health outcomes (e.g., long COVID) to ensure the model remains relevant in the face of constantly changing discussion on risks versus benefits of COVID-19 vaccination.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21264337

RESUMEN

Thrombosis and Thromobocytopenia Syndrome (TTS) has been associated with the AstraZencea (AZ) COVID-19 vaccine. Australia has reported low TTS incidence of <3/100,000 after the first dose, with case fatality rate (CFR) of 5-6%. Risk-benefit analysis of vaccination has been challenging because of rapidly evolving data, changing levels of transmission, and age-specific variation in rates of TTS, COVID-19, and CFR. We aim to optimise risk-benefit analysis by developing a model that enables inputs to be updated rapidly as evidence evolves. A Bayesian network was used to integrate local and international data, government reports, published literature and expert opinion. The model estimates probabilities of outcomes under different scenarios of age, sex, low/medium/high transmission (0.05%/0.45%/5.76% of population infected over 6 months), SARS-CoV-2 variant, vaccine doses, and vaccine effectiveness. We used the model to compare estimated deaths from vaccine-associated TTS with i) COVID-19 deaths prevented under different scenarios, and ii) deaths from COVID-19 related atypical severe blood clots (cerebral venous sinus thrombosis & portal vein thrombosis). For a million people aged [≥]70 years where 70% received first dose and 35% received two doses, our model estimated <1 death from TTS, 25 deaths prevented under low transmission, and >3000 deaths prevented under high transmission. Risks versus benefits varied significantly between age groups and transmission levels. Under high transmission, deaths prevented by AZ vaccine far exceed deaths from TTS (by 8 to >4500 times depending on age). Probability of dying from COVID-related atypical severe blood clots was 58-126 times higher (depending on age and sex) than dying from TTS. To our knowledge, this is the first example of the use of Bayesian networks for risk-benefit analysis for a COVID-19 vaccine. The model can be rapidly updated to incorporate new data, adapted for other countries, extended to other outcomes (e.g., severe disease), or used for other vaccines. HIGHLIGHTSO_LIAZ vaccination risk-benefit analysis must consider age/community transmission level C_LIO_LIAZ vaccine benefits far outweigh risks in older age groups and during high transmission C_LIO_LIAZ vaccine-associated TTS lower fatality than COVID-related atypical blood clots C_LIO_LIBayesian networks utility for risk-benefit analysis of rapidly evolving situations C_LIO_LIBNs allow integrating multiple data sources when large datasets are not available C_LI

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21255465

RESUMEN

During the COVID-19 pandemic, many countries implemented international travel restrictions that aimed to contain viral spread while still allowing necessary cross-border travel for social and economic reasons. The relative effectiveness of these approaches for controlling the pandemic has gone largely unstudied. Here we developed a flexible network meta-population model to compare the effectiveness of international travel policies, with a focus on evaluating the benefit of policy coordination. Because country-level epidemiological parameters are unknown, they need to be estimated from data; we accomplished this using approximate Bayesian computation, given the nature of our complex stochastic disease transmission model. Based on simulation and theoretical insights we find that, under our proposed policy, international airline travel may resume up to 58% of the pre-pandemic level with pandemic control comparable to that of a complete shutdown of all airline travel. Our results demonstrate that global coordination is necessary to allow for maximum travel with minimum effect on viral spread.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20221077

RESUMEN

Hawkes processes are a form of self-exciting process that has been used in numerous applications, including neuroscience, seismology, and terrorism. While these self-exciting processes have a simple formulation, they are able to model incredibly complex phenomena. Traditionally Hawkes processes are a continuous-time process, however we enable these models to be applied to a wider range of problems by considering a discrete-time variant of Hawkes processes. We illustrate this through the novel coronavirus disease (COVID-19) as a substantive case study. While alternative models, such as compartmental and growth curve models, have been widely applied to the COVID-19 epidemic, the use of discrete-time Hawkes processes allows us to gain alternative insights. This paper evaluates the capability of discrete-time Hawkes processes by retrospectively modelling daily counts of deaths as two distinct phases in the progression of the COVID-19 outbreak: the initial stage of exponential growth and the subsequent decline as preventative measures become effective. We consider various countries that have been adversely affected by the epidemic, namely, Brazil, China, France, Germany, India, Italy, Spain, Sweden, the United Kingdom and the United States. These countries are all unique concerning the spread of the virus and their corresponding response measures, in particular, the types and timings of preventative actions. However, we find that this simple model is useful in accurately capturing the dynamics of the process, despite hidden interactions that are not directly modelled due to their complexity, and differences both within and between countries. The utility of this model is not confined to the current COVID-19 epidemic, rather this model could be used to explain many other complex phenomena. It is of interest to have simple models that adequately describe these complex processes with unknown dynamics. As models become more complex, a simpler representation of the process can be desirable for the sake of parsimony.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20085662

RESUMEN

BackgroundThe global impact of COVID-19 and the country-specific responses to the pandemic provide an unparalleled opportunity to learn about different patterns of the outbreak and interventions. We model the global pattern of trajectories of reported COVID-19 cases during the primary response period, with the aim of learning from the past to prepare for the future. MethodsUsing Bayesian methods, we analyse the response to the COVID-19 outbreak for 158 countries for the period 22 January to 9 June 2020. This encompasses the period in which many countries imposed a variety of response measures and initial relaxation strategies. Instead of modelling specific intervention types and timings for each country explicitly, we adopt a stochastic epidemiological model including a feedback mechanism on virus transmission to capture complex nonlinear dynamics arising from continuous changes in community behaviour in response to rising case numbers. We analyse the overall effect of interventions and community responses across diverse regions. This approach mitigates explicit consideration of issues such as period of infectivity and public adherence to government restrictions. ResultsCountries with the largest cumulative case tallies are characterised by a delayed response, whereas countries that avoid substantial community transmission during the period of study responded quickly. Countries that recovered rapidly also have a higher case identification rate and small numbers of undocumented community transmission at the early stages of the outbreak. We also demonstrate that uncertainty in numbers of undocumented infections dramatically impacts the risk of second waves. Our approach is also effective at pre-empting potential second waves and flare-ups. ConclusionsWe demonstrate the utility of modelling to interpret community behaviour in the early epidemic stages. Two lessons learnt that are important for the future are: i) countries that imposed strict containment measures early in the epidemic fared better with respect to numbers of reported cases; and ii) broader testing is required early in the epidemic to understand the magnitude of undocumented infections and recover rapidly. We conclude that clear patterns of containment are essential prior to relaxation of restrictions and show that modelling can provide insights to this end.

7.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-763936

RESUMEN

OBJECTIVES: Ultrasound has an established role in the diagnostic pathway for children with suspected appendicitis. Relevant clinical information can influence the diagnostic probability and reporting of ultrasound findings. A Bayesian network (BN) is a directed acyclic graph (DAG) representing variables as nodes connected by directional arrows permitting visualisation of their relationships. This research developed a BN model with ultrasonographic and clinical variables to predict acute appendicitis in children. METHODS: A DAG was designed through a hybrid method based on expert opinion and a review of literature to define the model structure; and the discretisation and weighting of identified variables were calculated using principal components analysis, which also informed the conditional probability table of nodes. RESULTS: The acute appendicitis target node was designated as an outcome of interest influenced by four sub-models, including Ultrasound Index, Clinical History, Physical Assessment, and Diagnostic Tests. These sub-models included four sonographic, three blood-test, and six clinical variables. The BN was scenario tested and evaluated for face, predictive, and content validity. A lack of similar networks complicated concurrent and convergent validity evaluation. CONCLUSIONS: To our knowledge, this is the first BN model developed for the identification of acute appendicitis incorporating imaging variables. It has particular benefit for cases in which variables are missing because prior probabilities are built into corresponding nodes. It will be of use to clinicians involved in ultrasound examination of children with suspected appendicitis, as well as their treating clinicians. Prospective evaluation and development of an online tool will permit validation and refinement of the BN.


Asunto(s)
Niño , Humanos , Apendicitis , Teorema de Bayes , Pruebas Diagnósticas de Rutina , Medicina de Emergencia , Testimonio de Experto , Métodos , Pediatría , Estudios Prospectivos , Ultrasonografía
8.
Ultrasonography ; : 67-75, 2019.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-731039

RESUMEN

PURPOSE: The purpose of this study was to determine whether the awareness and inclusion of secondary sonographic signs of appendicitis, in combination with a structured evaluation as part of engagement and training for sonographers, improved appendix visualization rates and reduced equivocal findings in children with suspected acute appendicitis. METHODS: This was a prospective study of 230 children at a tertiary children's hospital in Australia referred for an ultrasound examination of suspected appendicitis. The ultrasound findings, radiology reports, histology, clinical results, and follow-up were collated. Secondary signs were used as an additional assessment of the likelihood of disease where possible, even in the absence of an identified appendix. RESULTS: The implementation of a structured evaluation as part of sonographer engagement and training resulted in a 28% improvement in appendix visualization (68.7%) compared with a prior retrospective study in a similar population (40.7%). The diagnostic accuracy was 91.7%, with likelihood ratios suggesting a meaningful influence of the pre-test probability of appendicitis in children studied (positive likelihood ratio, 11.22; negative likelihood ratio, 0.09.). Only 7.8% of the findings were equivocal. A binary 6-mm diameter cut-off did not account for equivocal cases, particularly lymphoid hyperplasia. CONCLUSION: Engagement of sonographers performing pediatric appendiceal ultrasound through training in the scanning technique and awareness of secondary signs significantly improved the visualization rate and provided more meaningful findings to referrers.


Asunto(s)
Niño , Humanos , Apendicitis , Apéndice , Australia , Diagnóstico por Imagen , Estudios de Seguimiento , Hiperplasia , Pediatría , Estudios Prospectivos , Estudios Retrospectivos , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA