Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(10): 11570-11578, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32048830

RESUMEN

Here, we demonstrate the theory-guided plasma synthesis of high purity nanocrystalline Li3.5Si0.5P0.5O4 and fully amorphous Li2.7Si0.7P0.3O3.17N0.22. The synthesis involves the injection of single or mixed phase precursors directly into a plasma torch. As the material exits the plasma torch, it is quenched into spherical nanocrystalline or amorphous nanopowders. This process has virtually zero Li loss and allows for the inclusion of N, which is not accessible with traditional synthesis methods. We further demonstrate the ability to sinter the crystalline nanopowder into a dense electrolyte membrane at 800 °C, well below the traditional 1000 °C required for a conventional Li3.5Si0.5P0.5O4 powder.

2.
J Am Chem Soc ; 140(35): 11029-11038, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30036061

RESUMEN

Lithium phosphorus oxynitride, also known as Lipon, solid-state electrolytes are at the center of the search for solid-state Li metal batteries. Key to the performance of Lipon is a combination of high Li content, amorphous character, and the incorporation of N into the structure. Despite the material's importance, our work presents the first study to fully resolve the structure of Lipon using a combination of  ab initio molecular dynamics, density functional theory, neutron scattering, and infrared spectroscopy. The modeled and experimental results have exceptional agreement in both neutron pair distribution function and infrared spectroscopy. Building on this synergy, the structural models show that N forms both bridges between two phosphate units and nonbridging apical N. We further show that as the Li content is increased the ratio of bridging to apical N shifts from being predominantly bridging at Li contents around 2.5:1 Li:P to only apical N at higher Li contents of 3.38:1 Li:P. This crossover from bridging to apical N appears to directly correlate with and explain both the increase in ionic conductivity with the incorporation of N and the ionic conductivity trends found in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA