Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 79(15): 4744-50, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23793628

RESUMEN

Lymph nodes (mandibular, mesenteric, mediastinal, and subiliac; n = 68) and fecal (n = 68) and hide (n = 35) samples were collected from beef carcasses harvested in an abattoir in Mexico. Samples were analyzed for Salmonella, and presumptive colonies were subjected to latex agglutination. Of the isolates recovered, a subset of 91 was characterized by serotyping, pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility phenotyping. Salmonella was isolated from 100% (hide), 94.1% (feces), 91.2% (mesenteric), 76.5% (subiliac), 55.9% (mandibular), and 7.4% (mediastinal) of samples. From the 87 typeable isolates, eight Salmonella enterica serotypes, including Kentucky (32.2%), Anatum (29.9%), Reading (17.2%), Meleagridis (12.6%), Cerro (4.6%), Muenster (1.1%), Give (1.1%), and Mbandaka (1.1%), were identified. S. Meleagridis was more likely (P = 0.03) to be recovered from lymph nodes than from feces or hides, whereas S. Kentucky was more likely (P = 0.02) to be recovered from feces and hides than from lymph nodes. The majority (59.3%) of the Salmonella isolates were pansusceptible; however, multidrug resistance was observed in 13.2% of isolates. Typing by PFGE revealed that Salmonella strains generally clustered by serotype, but some serotypes (Anatum, Kentucky, Meleagridis, and Reading) were comprised of multiple PFGE subtypes. Indistinguishable PFGE subtypes and, therefore, serotypes were isolated from multiple sample types, and multiple PFGE subtypes were commonly observed within an animal. Given the overrepresentation of some serotypes within lymph nodes, we hypothesize that certain Salmonella strains may be better at entering the bovine host than other Salmonella strains or that some may be better adapted for survival within lymph nodes. Our data provide insight into the ecology of Salmonella within cohorts of cattle and offer direction for intervention opportunities.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Polimorfismo Genético , Salmonelosis Animal/microbiología , Salmonella/clasificación , Salmonella/genética , Mataderos , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Farmacorresistencia Bacteriana Múltiple , Electroforesis en Gel de Campo Pulsado/veterinaria , Heces/microbiología , Ganglios Linfáticos/microbiología , México , Pruebas de Sensibilidad Microbiana/veterinaria , Filogenia , Salmonella/efectos de los fármacos , Salmonella/aislamiento & purificación , Salmonelosis Animal/epidemiología , Serotipificación/veterinaria , Piel/microbiología
2.
PLoS One ; 7(7): e41536, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844492

RESUMEN

ER-bound PTP1B is expressed in hippocampal neurons, and accumulates among neurite contacts. PTP1B dephosphorylates ß-catenin in N-cadherin complexes ensuring cell-cell adhesion. Here we show that endogenous PTP1B, as well as expressed GFP-PTP1B, are present in dendritic spines of hippocampal neurons in culture. GFP-PTP1B overexpression does not affect filopodial density or length. In contrast, impairment of PTP1B function or genetic PTP1B-deficiency leads to increased filopodia-like dendritic spines and a reduction in mushroom-like spines, while spine density is unaffected. These morphological alterations are accompanied by a disorganization of pre- and post-synapses, as judged by decreased clustering of synapsin-1 and PSD-95, and suggest a dynamic synaptic phenotype. Notably, levels of ß-catenin-Tyr-654 phosphorylation increased ∼5-fold in the hippocampus of adult PTP1B(-/-) (KO) mice compared to wild type (WT) mice and this was accompanied by a reduction in the amount of ß-catenin associated with N-cadherin. To determine whether PTP1B-deficiency alters learning and memory, we generated mice lacking PTP1B in the hippocampus and cortex (PTP1B(fl/fl)-Emx1-Cre). PTP1B(fl/fl)-Emx1-Cre mice displayed improved performance in the Barnes maze (decreased time to find and enter target hole), utilized a more efficient strategy (cued), and had better recall compared to WT controls. Our results implicate PTP1B in structural plasticity within the hippocampus, likely through modulation of N-cadherin function by ensuring dephosphorylation of ß-catenin on Tyr-654. Disruption of hippocampal PTP1B function or expression leads to elongation of dendritic filopodia and improved learning and memory, demonstrating an exciting novel role for this phosphatase.


Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Aprendizaje , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Sinapsis/metabolismo , Animales , Cadherinas/metabolismo , Espinas Dendríticas/metabolismo , Femenino , Eliminación de Gen , Hipocampo/metabolismo , Memoria , Ratones , Plasticidad Neuronal , Fosforilación , Embarazo , Transporte de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 1/deficiencia , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Ratas , Tirosina/metabolismo , beta Catenina/química , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA