Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Physiol Biochem ; 57(1): 1-14, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36695077

RESUMEN

BACKGROUND/AIMS: The ribosome-inactivating proteins include the biothreat agent, ricin toxin (RT). When inhaled, RT causes near complete destruction of the lung epithelium coincident with a proinflammatory response that includes TNF family cytokines, which are death-inducing ligands. We previously demonstrated that the combination of RT and TNF-related apoptosis inducing ligand (TRAIL) induces caspase-dependent apoptosis, while RT and TNF-α or RT and Fas ligand (FasL) induces cathepsin-dependent cell death in lung epithelial cells. We hypothesize that airway macrophages constitute a major source of cytokines that drive lung epithelial cell death. METHODS: Here, we show that RT-induced apoptosis of the monocytic cell line, U937, leads to the bystander killing of the lung epithelial cell line, A549. U937 cells were treated with ricin. Following this, A549 cells were treated with supernatants from U937 cells and death was measured by WST-1 viability assay. RESULTS: Upon RT-induced U937 cell death, released RT and FasL contributed to A549 cell death. U937 cells also released nuclear protein HMGB1. The release of RT, FasL, and HMGB1 triggered A549 cell necroptosis, rather than cathepsin-dependent killing observed previously with RT and FasL. Reactive oxygen species (ROS) were produced in A549 cells due to HMGB1 ligation of the receptor for advanced glycation end products (RAGE). CONCLUSION: These findings demonstrate the potential for bystander necroptosis of lung epithelial cells during RT toxicosis which may perpetuate or increase the proinflammatory response.


Asunto(s)
Proteína HMGB1 , Ricina , Humanos , Ricina/toxicidad , Células U937 , Necroptosis , Apoptosis , Pulmón/metabolismo , Células Epiteliales/metabolismo , Proteína Ligando Fas , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Catepsinas , Inflamación , Receptor fas
2.
Toxins (Basel) ; 11(8)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374990

RESUMEN

Ricin is a member of the ribosome-inactivating protein (RIP) family of toxins and is classified as a biothreat agent by the Centers for Disease Control and Prevention (CDC). Inhalation, the most potent route of toxicity, triggers an acute respiratory distress-like syndrome that coincides with near complete destruction of the lung epithelium. We previously demonstrated that the TNF-related apoptosis-inducing ligand (TRAIL; CD253) sensitizes human lung epithelial cells to ricin-induced death. Here, we report that ricin/TRAIL-mediated cell death occurs via apoptosis and involves caspases -3, -7, -8, and -9, but not caspase-6. In addition, we show that two other TNF family members, TNF-α and Fas ligand (FasL), also sensitize human lung epithelial cells to ricin-induced death. While ricin/TNF-α- and ricin/FasL-mediated killing of A549 cells was inhibited by the pan-caspase inhibitor, zVAD-fmk, evidence suggests that these pathways were not caspase-dependent apoptosis. We also ruled out necroptosis and pyroptosis. Rather, the combination of ricin plus TNF-α or FasL induced cathepsin-dependent cell death, as evidenced by the use of several pharmacologic inhibitors. We postulate that the effects of zVAD-fmk were due to the molecule's known off-target effects on cathepsin activity. This work demonstrates that ricin-induced lung epithelial cell killing occurs by distinct cell death pathways dependent on the presence of different sensitizing cytokines, TRAIL, TNF-α, or FasL.


Asunto(s)
Proteína Ligando Fas/toxicidad , Ricina/toxicidad , Ligando Inductor de Apoptosis Relacionado con TNF/toxicidad , Factor de Necrosis Tumoral alfa/toxicidad , Células A549 , Clorometilcetonas de Aminoácidos/farmacología , Inhibidores de Caspasas/farmacología , Muerte Celular/efectos de los fármacos , Humanos , Pulmón/citología , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA