Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 94(7): 531-542, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36931452

RESUMEN

BACKGROUND: Second-generation antipsychotics (SGAs) are frontline treatments for serious mental illness. Often, individual patients benefit only from some SGAs and not others. The mechanisms underlying this unpredictability in treatment efficacy remain unclear. All SGAs bind the dopamine D3 receptor (D3R) and are traditionally considered antagonists for dopamine receptor signaling. METHODS: Here, we used a combination of two-photon calcium imaging, in vitro signaling assays, and mouse behavior to assess signaling by SGAs at D3R. RESULTS: We report that some clinically important SGAs function as arrestin-3 agonists at D3R, resulting in modulation of calcium channels localized to the site of action potential initiation in prefrontal cortex pyramidal neurons. We further show that chronic treatment with an arrestin-3 agonist SGA, but not an antagonist SGA, abolishes D3R function through postendocytic receptor degradation by GASP1 (G protein-coupled receptor-associated sorting protein-1). CONCLUSIONS: These results implicate D3R-arrestin-3 signaling as a source of SGA variability, highlighting the importance of including arrestin-3 signaling in characterizations of drug action. Furthermore, they suggest that postendocytic receptor trafficking that occurs during chronic SGA treatment may contribute to treatment efficacy.


Asunto(s)
Antipsicóticos , Dopamina , Ratones , Animales , Arrestina beta 2/metabolismo , Antipsicóticos/farmacología , Receptores de Dopamina D3/metabolismo , Agonistas de Dopamina/farmacología , Tolerancia a Medicamentos , Receptores de Dopamina D1/metabolismo
2.
Cell Rep ; 36(5): 109483, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348157

RESUMEN

Loss-of-function variants in the gene SCN2A, which encodes the sodium channel NaV1.2, are strongly associated with autism spectrum disorder and intellectual disability. An estimated 20%-30% of children with these variants also suffer from epilepsy, with altered neuronal activity originating in neocortex, a region where NaV1.2 channels are expressed predominantly in excitatory pyramidal cells. This is paradoxical, as sodium channel loss in excitatory cells would be expected to dampen neocortical activity rather than promote seizure. Here, we examined pyramidal neurons lacking NaV1.2 channels and found that they were intrinsically hyperexcitable, firing high-frequency bursts of action potentials (APs) despite decrements in AP size and speed. Compartmental modeling and dynamic-clamp recordings revealed that NaV1.2 loss prevented potassium channels from properly repolarizing neurons between APs, increasing overall excitability by allowing neurons to reach threshold for subsequent APs more rapidly. This cell-intrinsic mechanism may, therefore, account for why SCN2A loss-of-function can paradoxically promote seizure.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Neocórtex/citología , Células Piramidales/metabolismo , Potenciales de Acción , Animales , Dendritas/metabolismo , Eliminación de Gen , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Neuron ; 103(4): 673-685.e5, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31230762

RESUMEN

Autism spectrum disorder (ASD) is strongly associated with de novo gene mutations. One of the most commonly affected genes is SCN2A. ASD-associated SCN2A mutations impair the encoded protein NaV1.2, a sodium channel important for action potential initiation and propagation in developing excitatory cortical neurons. The link between an axonal sodium channel and ASD, a disorder typically attributed to synaptic or transcriptional dysfunction, is unclear. Here we show that NaV1.2 is unexpectedly critical for dendritic excitability and synaptic function in mature pyramidal neurons in addition to regulating early developmental axonal excitability. NaV1.2 loss reduced action potential backpropagation into dendrites, impairing synaptic plasticity and synaptic strength, even when NaV1.2 expression was disrupted in a cell-autonomous fashion late in development. These results reveal a novel dendritic function for NaV1.2, providing insight into cellular mechanisms probably underlying circuit and behavioral dysfunction in ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Dendritas/fisiología , Canal de Sodio Activado por Voltaje NAV1.2/fisiología , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Potenciales de Acción , Animales , Señalización del Calcio , Femenino , Regulación del Desarrollo de la Expresión Génica , Heterocigoto , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Potenciales Postsinápticos Miniatura/fisiología , N-Metilaspartato/análisis , Canal de Sodio Activado por Voltaje NAV1.2/genética , Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Neocórtex/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/crecimiento & desarrollo , Ingeniería de Proteínas , Conducta Social , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/análisis
4.
Neuron ; 99(5): 969-984.e7, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30122380

RESUMEN

Neuromodulators are important regulators of synaptic transmission throughout the brain. At the presynaptic terminal, neuromodulation of calcium channels (CaVs) can affect transmission not only by changing neurotransmitter release probability, but also by shaping short-term plasticity (STP). Indeed, changes in STP are often considered a requirement for defining a presynaptic site of action. Nevertheless, some synapses exhibit non-canonical forms of neuromodulation, where release probability is altered without a corresponding change in STP. Here, we identify biophysical mechanisms whereby both canonical and non-canonical presynaptic neuromodulation can occur at the same synapse. At a subset of glutamatergic terminals in prefrontal cortex, GABAB and D1/D5 dopamine receptors suppress release probability with and without canonical increases in short-term facilitation by modulating different aspects of presynaptic CaV function. These findings establish a framework whereby signaling from multiple neuromodulators can converge on presynaptic CaVs to differentially tune release dynamics at the same synapse.


Asunto(s)
Canales de Calcio/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Neurotransmisores/farmacología , Corteza Prefrontal/fisiología , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
5.
Elife ; 62017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29206101

RESUMEN

The medial prefrontal cortex plays a key role in higher order cognitive functions like decision making and social cognition. These complex behaviors emerge from the coordinated firing of prefrontal neurons. Fast-spiking interneurons (FSIs) control the timing of excitatory neuron firing via somatic inhibition and generate gamma (30-100 Hz) oscillations. Therefore, factors that regulate how FSIs respond to gamma-frequency input could affect both prefrontal circuit activity and behavior. Here, we show that serotonin (5HT), which is known to regulate gamma power, acts via 5HT2A receptors to suppress an inward-rectifying potassium conductance in FSIs. This leads to depolarization, increased input resistance, enhanced spiking, and slowed decay of excitatory post-synaptic potentials (EPSPs). Notably, we found that slowed EPSP decay preferentially enhanced temporal summation and firing elicited by gamma frequency inputs. These findings show how changes in passive membrane properties can affect not only neuronal excitability but also the temporal filtering of synaptic inputs.


Asunto(s)
Potenciales de Acción , Ritmo Gamma , Interneuronas/fisiología , Corteza Prefrontal/fisiología , Serotonina/metabolismo , Animales , Conductividad Eléctrica , Ratones , Modelos Neurológicos , Imagen Óptica , Canales de Potasio/metabolismo , Receptores de Serotonina/metabolismo
6.
Biol Psychiatry ; 82(3): 224-232, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28256214

RESUMEN

BACKGROUND: Variants in the SCN2A gene that disrupt the encoded neuronal sodium channel NaV1.2 are important risk factors for autism spectrum disorder (ASD), developmental delay, and infantile seizures. Variants observed in infantile seizures are predominantly missense, leading to a gain of function and increased neuronal excitability. How variants associated with ASD affect NaV1.2 function and neuronal excitability are unclear. METHODS: We examined the properties of 11 ASD-associated SCN2A variants in heterologous expression systems using whole-cell voltage-clamp electrophysiology and immunohistochemistry. Resultant data were incorporated into computational models of developing and mature cortical pyramidal cells that express NaV1.2. RESULTS: In contrast to gain of function variants that contribute to seizure, we found that all ASD-associated variants dampened or eliminated channel function. Incorporating these electrophysiological results into a compartmental model of developing excitatory neurons demonstrated that all ASD variants, regardless of their mechanism of action, resulted in deficits in neuronal excitability. Corresponding analysis of mature neurons predicted minimal change in neuronal excitability. CONCLUSIONS: This functional characterization thus identifies SCN2A mutation and NaV1.2 dysfunction as the most frequently observed ASD risk factor detectable by exome sequencing and suggests that associated changes in neuronal excitability, particularly in developing neurons, may contribute to ASD etiology.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Epilepsia Benigna Neonatal/genética , Epilepsia Benigna Neonatal/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/genética , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Corteza Cerebral/metabolismo , Simulación por Computador , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Inmunohistoquímica , Lactante , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Mutación , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Técnicas de Placa-Clamp , Células Piramidales/citología , Células Piramidales/metabolismo , Convulsiones/genética , Convulsiones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA