Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Eukaryot Microbiol ; 70(5): e12987, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37282792

RESUMEN

Most Parabasalia are symbionts in the hindgut of "lower" (non-Termitidae) termites, where they widely vary in morphology and degree of morphological complexity. Large and complex cells in the class Cristamonadea evolved by replicating a fundamental unit, the karyomastigont, in various ways. We describe here four new species of Calonymphidae (Cristamonadea) from Rugitermes hosts, assigned to the genus Snyderella based on diagnostic features (including the karyomastigont pattern) and molecular phylogeny. We also report a new genus of Calonymphidae, Daimonympha, from Rugitermes laticollis. Daimonympha's morphology does not match that of any known Parabasalia, and its SSU rRNA gene sequence corroborates this distinction. Daimonympha does however share a puzzling feature with a few previously described, but distantly related, Cristamonadea: a rapid, smooth, and continuous rotation of the anterior end of the cell, including the many karyomastigont nuclei. The function of this rotatory movement, the cellular mechanisms enabling it, and the way the cell deals with the consequent cell membrane shear, are all unknown. "Rotating wheel" structures are famously rare in biology, with prokaryotic flagella being the main exception; these mysterious spinning cells found only among Parabasalia are another, far less understood, example.


Asunto(s)
Isópteros , Parabasalidea , Animales , Filogenia , América del Sur
2.
Eur J Protistol ; 77: 125758, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33307359

RESUMEN

Recent progress in understanding the early evolution of eukaryotes was tied to morphological identification of flagellates and heliozoans from natural samples, isolation of their culture and genomic and ultrastructural investigations. These protists are the smallest and least studied microbial eukaryotes but play an important role in the functioning of microbial food webs. Using light and electron microscopy, we have studied the diversity of heterotrophic flagellates and centrohelid heliozoans from marine waters of Curacao (The Netherlands Antilles), and provide micrographs and morphological descriptions of observed species. Among 86 flagellates and 3 centrohelids encountered in this survey, five heterotrophic flagellates and one сentrohelid heliozoan were not identified even to the genus. Some flagellate protists have a unique morphology, and may represent undescribed lineages of eukaryotes of high taxonomic rank. The vast majority (89%) of identified flagellates is characterized by wide geographical distribution and have been reported previously from all hemispheres and various climatic regions. More than half of the species were previously observed not only from marine, but also from freshwater habitats. The parameters of the species accumulation curve indicate that our species list obtained for the Curacao study sites is far from complete, and each new sample should yield new species.


Asunto(s)
Organismos Acuáticos/clasificación , Biodiversidad , Eucariontes/clasificación , Agua de Mar/parasitología , Organismos Acuáticos/ultraestructura , Curazao , Eucariontes/ultraestructura , Microscopía Electrónica de Transmisión , Especificidad de la Especie
3.
Int J Syst Evol Microbiol ; 67(9): 3570-3575, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28840814

RESUMEN

Members of the genus Trichonympha are among the most well-known, recognizable and widely distributed parabasalian symbionts of lower termites and the wood-eating cockroach species of the genus Cryptocercus. Nevertheless, the species diversity of this genus is largely unknown. Molecular data have shown that the superficial morphological similarities traditionally used to identify species are inadequate, and have challenged the view that the same species of the genus Trichonympha can occur in many different host species. Ambiguities in the literature, uncertainty in identification of both symbiont and host, and incomplete samplings are limiting our understanding of the systematics, ecology and evolution of this taxon. Here we describe four closely related novel species of the genus Trichonympha collected from South American and Australian lower termites: Trichonympha hueyi sp. nov. from Rugitermes laticollis, Trichonympha deweyi sp. nov. from Glyptotermes brevicornis, Trichonympha louiei sp. nov. from Calcaritermes temnocephalus and Trichonympha webbyae sp. nov. from Rugitermes bicolor. We provide molecular barcodes to identify both the symbionts and their hosts, and infer the phylogeny of the genus Trichonympha based on small subunit rRNA gene sequences. The analysis confirms the considerable divergence of symbionts of members of the genus Cryptocercus, and shows that the two clades of the genus Trichonympha harboured by termites reflect only in part the phylogeny of their hosts.


Asunto(s)
Sistema Digestivo/microbiología , Hypermastigia/clasificación , Isópteros/microbiología , Filogenia , Animales , Australia , Composición de Base , Ecuador , Hypermastigia/genética , Hypermastigia/aislamiento & purificación , Perú , ARN Protozoario/genética , ARN Ribosómico/genética , Análisis de Secuencia de ADN , Simbiosis
4.
PLoS One ; 9(4): e95467, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24740116

RESUMEN

The evolutionary and ecological importance of predatory flagellates are too often overlooked. This is not only a gap in our understanding of microbial diversity, but also impacts how we interpret their better-studied relatives. A prime example of these problems is found in the alveolates. All well-studied species belong to three large clades (apicomplexans, dinoflagellates, and ciliates), but the predatory colponemid flagellates are also alveolates that are rare in nature and seldom cultured, but potentially important to our understanding of alveolate evolution. Recently we reported the first cultivation and molecular analysis of several colponemid-like organisms representing two novel clades in molecular trees. Here we provide ultrastructural analysis and formal species descriptions for both new species, Colponema vietnamica n. sp. and Acavomonas peruviana n. gen. n. sp. Morphological and feeding characteristics concur with molecular data that both species are distinct members of alveolates, with Acavomonas lacking the longitudinal phagocytotic groove, a defining feature of Colponema. Based on ultrastructure and molecular phylogenies, which both provide concrete rationale for a taxonomic reclassification of Alveolata, we establish the new phyla Colponemidia nom. nov. for the genus Colponema and its close relatives, and Acavomonidia nom. nov. for the genus Acavomonas and its close relatives. The morphological data presented here suggests that colponemids are central to our understanding of early alveolate evolution, and suggest they also retain features of the common ancestor of all eukaryotes.


Asunto(s)
Alveolados/clasificación , Alveolados/genética , ADN Protozoario/genética , Filogenia , ARN Ribosómico 18S/genética , Alveolados/aislamiento & purificación , Alveolados/ultraestructura , Evolución Biológica , Perú , Federación de Rusia , Análisis de Secuencia de ADN , Suelo/parasitología , Vietnam
5.
Int J Syst Evol Microbiol ; 61(Pt 10): 2547-2558, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21112987

RESUMEN

Calonymphids are a group of multinucleate, multiflagellate protists belonging to the order Cristamonadida (Parabasalia) that are found exclusively in the hindgut of termites from the family Kalotermitidae. Despite their impressive morphological complexity and diversity, few species have been formally described and fewer still have been characterized at the molecular level. In this study, four novel species of calonymphids were isolated and characterized: Calonympha chia and Snyderella yamini spp. nov., from Neotermes castaneus and Calcaritermes nearcticus from Florida, USA, and Snyderella kirbyi and Snyderella swezyae, spp. nov., from Calcaritermes nigriceps and Cryptotermes cylindroceps from Colombia. Each of these species was distinguished from its congeners by residing in a distinct host and by differences at the molecular level. Phylogenetic analyses of small subunit (SSU) rDNA indicated that the genera Calonympha and Stephanonympha were probably not monophyletic, though the genus Snyderella, previously only represented by one sequence in molecular analyses, appeared with these new data to be monophyletic. This was in keeping with the traditional evolutionary view of the group in which the morphology of the genus Snyderella is considered to be derived, while that of the genus Stephanonympha is ancestral and therefore probably plesiomorphic.


Asunto(s)
Parabasalidea/clasificación , Parabasalidea/aislamiento & purificación , Animales , Análisis por Conglomerados , Colombia , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Florida , Genes de ARNr , Isópteros/parasitología , Microscopía , Datos de Secuencia Molecular , Parabasalidea/citología , Parabasalidea/genética , Filogenia , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA