Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 9: 1229, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233607

RESUMEN

Root hairs are the part of root architecture contributing significantly to the root surface area. Their role is particularly substantial in maintaining plant growth under stress conditions, however, knowledge on mechanism of root hair differentiation is still limited for majority of crop species, including barley. Here, we report the results of a map-based identification of a candidate gene responsible for the lack of root epidermal cell differentiation, which results in the lack of root hairs in barley. The analysis was based on the root hairless barley mutant rhl1.b, obtained after chemical mutagenesis of spring cultivar 'Karat'. The rhl1 gene was located in chromosome 7HS in our previous studies. Fine mapping allowed to narrow the interval encompassing rhl1 gene to 3.7 cM, which on physical barley map spans a region of 577 kb. Five high confidence genes are located within this region and their sequencing resulted in the identification of A>T mutation in one candidate, HORVU7Hr1G030250 (MLOC_38567), differing the mutant from its parent variety. The mutation, located in the 3' splice-junction site, caused the retention of the last intron, 98 bp long, in mRNA of rhl1.b allele. This resulted in the frameshift, the synthesis of 71 abnormal amino acids and introduction of premature STOP codon in mRNA. The mutation was present in the recombinants from the mapping population (F2rhl1.b × 'Morex') that lacked root hairs. The candidate gene encodes a bHLH transcription factor with LRL domain and may be involved in early stages of root hair cell development. We discuss the possible involvement of HORVU7Hr1G030250 in this process, as the best candidate responsible for early stages of rhizodermis differentiation in barley.

2.
J Appl Genet ; 55(4): 433-47, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24899566

RESUMEN

Root hairs are tubular outgrowths of specialized epidermal cells called trichoblasts. They affect anchoring plants in soil, the uptake of water and nutrients and are the sites of the interaction between plants and microorganisms. Nineteen root hair mutants of barley representing different stages of root hair development were subjected to detailed morphological and genetic analyses. Each mutant was monogenic and recessive. An allelism test revealed that nine loci were responsible for the mutated root hair phenotypes in the collection and 1-4 mutated allelic forms were identified at each locus. Genetic relationships between the genes responsible for different stages of root hair formation were established. The linkage groups of four loci rhl1, rhp1, rhi1 and rhs1, which had previously been mapped on chromosomes 7H, 1H, 6H and 5H, respectively, were enriched with new markers that flank the genes at a distance of 0.16 cM to 4.6 cM. The chromosomal position of three new genes - two that are responsible for the development of short root hairs (rhs2 and rhs3) and the gene that controls an irregular root hair pattern (rhi2) - were mapped on chromosomes 6H, 2H and 1H, respectively. A comparative analysis of the agrobotanical parameters between some mutants and their respective parental lines showed that mutations in genes responsible for root hair development had no effect on the agrobotanical performance of plants that were grown under controlled conditions. The presented mutant collection is a valuable tool for further identification of genes controlling root hair development in barley.


Asunto(s)
Genes de Plantas/genética , Hordeum/crecimiento & desarrollo , Hordeum/genética , Mutación/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Mapeo Cromosómico , Cromosomas de las Plantas , ADN de Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA