Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 5(5): 2133-41, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23385623

RESUMEN

We report that ultra-small, monodisperse, water-dispersible magnetite (Fe(3)O(4)) nanoparticles can be synthesized by a facile one-pot approach using trisodium citrate as crystal grain growth inhibitor and stabilizer in polyol solution. The resultant Fe(3)O(4) nanoparticles exhibit an excellent long-term colloidal stability in various buffer solutions without any modification. They are also superparamagnetic at room temperature and their magnetic property relies heavily on their size. Due to the low magnetization and good water-dispersibility, the 1.9 nm-sized Fe(3)O(4) nanoparticles reveal a low r(2)/r(1) ratio of 2.03 (r(1) = 1.415 mM(-1) s(-1), r(2) = 2.87 mM(-1) s(-1)), demonstrating that they can be efficient T(1) contrast agents. On the other hand, because of the excellent magnetic responsivity, the 13.8 nm-sized Fe(3)O(4) nanoparticles can be readily modified with nitrilotriacetic acid and used to separate the protein simply with the assistance of a magnet. In addition, these Fe(3)O(4) nanoparticles may be useful in other fields, such as hyperthermia treatment of cancer and targeted drug delivery based on their size-dependent magnetic property and excellent stability.

2.
Nanoscale Res Lett ; 8(1): 4, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23279853

RESUMEN

A near-infrared (NIR)-responsive Aurod@pNIPAAm-PEGMA nanogel was synthesized in two steps, growing a PEGMA monolayer on the surface of gold nanorods (AuNRs), followed by in situ polymerization and cross-linking of N-iso-propylacrylamide (NIPAAm) and poly-(ethylene glycol)-methacrylate (PEGMA). The AuNRs and Aurod@pNIPAAm-PEGMA nanogel were characterized by UV-vis spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy, respectively. The lower critical solution temperature of the Aurod@pNIPAAm-PEGMA nanogel could be tuned by changing the molar ratio of NIPAAm/PEGMA. The NIR-mediated drug release behavior of the Aurod@pNIPAAm-PEGMA nanogel was studied with zinc phthalocyanines (ZnPc4) as a drug model. It was also demonstrated that the loaded ZnPc4 could keep the capability of generating singlet oxygen, and the in vitro study showed a great photodynamic therapy (PDT) effect on Hela cells. It thus indicated the potential of this Aurod@pNIPAAm-PEGMA nanogel for application as a drug carrier in PDT, which might make contributions to oncotherapy.

3.
Chem Commun (Camb) ; (10): 1264-6, 2009 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-19240894

RESUMEN

Ceramic membranes were fabricated by in situ synthesis of alumina nanofibres in the pores of an alumina support as a separation layer, and exhibited a high permeation selectivity for bovine serum albumin relative to bovine hemoglobin (over 60 times) and can effectively retain DNA molecules at high fluxes.


Asunto(s)
Óxido de Aluminio/química , Cerámica/química , ADN/aislamiento & purificación , Hemoglobinas/aislamiento & purificación , Nanoestructuras/química , Albúmina Sérica Bovina/aislamiento & purificación , Animales , Bovinos , ADN/química , Hemoglobinas/química , Microscopía Electrónica de Rastreo , Nanoestructuras/ultraestructura , Porosidad , Albúmina Sérica Bovina/química
4.
J Phys Chem B ; 112(16): 5000-6, 2008 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-18386864

RESUMEN

Traditional ceramic separation membranes, which are fabricated by applying colloidal suspensions of metal hydroxides to porous supports, tend to suffer from pinholes and cracks that seriously affect their quality. Other intrinsic problems for these membranes include dramatic losses of flux when the pore sizes are reduced to enhance selectivity and dead-end pores that make no contribution to filtration. In this work, we propose a new strategy for addressing these problems by constructing a hierarchically structured separation layer on a porous substrate using large titanate nanofibers and smaller boehmite nanofibers. The nanofibers are able to divide large voids into smaller ones without forming dead-end pores and with the minimum reduction of the total void volume. The separation layer of nanofibers has a porosity of over 70% of its volume, whereas the separation layer in conventional ceramic membranes has a porosity below 36% and inevitably includes dead-end pores that make no contribution to the flux. This radical change in membrane texture greatly enhances membrane performance. The resulting membranes were able to filter out 95.3% of 60-nm particles from a 0.01 wt % latex while maintaining a relatively high flux of between 800 and 1000 L/m2.h, under a low driving pressure (20 kPa). Such flow rates are orders of magnitude greater than those of conventional membranes with equal selectivity. Moreover, the flux was stable at approximately 800 L/m2.h with a selectivity of more than 95%, even after six repeated runs of filtration and calcination. Use of different supports, either porous glass or porous alumina, had no substantial effect on the performance of the membranes; thus, it is possible to construct the membranes from a variety of supports without compromising functionality. The Darcy equation satisfactorily describes the correlation between the filtration flux and the structural parameters of the new membranes. The assembly of nanofiber meshes to combine high flux with excellent selectivity is an exciting new direction in membrane fabrication.


Asunto(s)
Cerámica/química , Metales/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Óxidos/química , Filtración , Microscopía Electrónica de Rastreo , Porosidad , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA