Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 10(5): e0235322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36106751

RESUMEN

Phylogenetic and sequence similarity network analyses of the CRP (cyclic AMP receptor protein)/FNR (fumarate and nitrate reductase regulatory protein) family of transcription factors indicate the presence of numerous subgroups, many of which have not been analyzed. Five homologs of the CRP/FNR family are present in the Rhodobacter capsulatus genome. One is a member of a broadly disseminated, previously uncharacterized CRP/FNR family subgroup encoded by the gene rcc01561. In this study, we utilize mutational disruption, transcriptome sequencing (RNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) to determine the role of RCC01561 in regulating R. capsulatus physiology. This analysis shows that a mutant strain disrupted for rcc01561 exhibits altered expression of 451 genes anaerobically. A detailed analysis of the affected loci shows that RCC01561 represses photosynthesis and favors catabolism over anabolism and the use of the Entner-Doudoroff shunt and glycolysis over that of the tricarboxylic acid (TCA) cycle to limit NADH and ATP formation. This newly characterized CRP/FNR family member with a predominant role in reducing the production of reducing potential and ATP is given the nomenclature RedB as it functions as an energy and redox brake. Beyond limiting energy production, RedB also represses the expression of numerous genes involved in protein synthesis, including those involved in translation initiation, tRNA synthesis and charging, and amino acid biosynthesis. IMPORTANCE CRP and FNR are well-characterized members of the CRP/FNR family of regulatory proteins that function to maximize cellular energy production. In this study, we identify several new subgroups of the CRP/FNR family, many of which have not yet been characterized. Using Rhodobacter capsulatus as a model, we have mutationally disrupted the gene rcc01561, which codes for a transcription factor that is a member of a unique subgroup of the CRP/FNR family. Transcriptomic analysis shows that the disruption of rcc01561 leads to the altered expression of 451 genes anaerobically. Analysis of these regulated genes indicates that RCC01561 has a novel role in limiting cellular energy production. To our knowledge, this is first example of a member of the CRP/FNR family that functions as a brake on cellular energy production.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Hierro-Azufre , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Filogenia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , NAD/genética , NAD/metabolismo , Factores de Transcripción/metabolismo , Oxidación-Reducción , Fumaratos , Ácidos Tricarboxílicos , Aminoácidos/metabolismo , ARN de Transferencia/metabolismo , Adenosina Trifosfato/metabolismo
2.
Microbiol Spectr ; 10(5): e0235422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36106752

RESUMEN

We recently described a new member of the CRP (cyclic AMP receptor protein)/FNR (fumarate and nitrate reductase regulatory protein) family called RedB, an acronym for redox brake, that functions to limit the production of ATP and NADH. This study shows that the RedB regulon significantly overlaps the FnrL regulon, with 199 genes being either directly or indirectly regulated by both of these global regulatory proteins. Among these 199 coregulated genes, 192 are divergently regulated, indicating that RedB functions as an antagonist of FnrL. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis indicates that RedB and Fnr directly coregulate only 4 out of 199 genes. The primary mechanism for the divergent regulation of target genes thus involves indirect regulation by both RedB and FnrL (156 cases). Additional regulation involves direct binding by RedB and indirect regulation by FnrL (36 cases) or direct binding by FnrL and indirect regulation by RedB (3 cases). Analysis of physiological pathways under direct and indirect control by these global regulators demonstrates that RedB functions primarily to limit energy production, while FnrL functions to enhance energy production. This regulation includes glycolysis, gluconeogenesis, photosynthesis, hydrogen oxidation, electron transport, carbon fixation, lipid biosynthesis, and protein synthesis. Finally, we show that 75% of genomes from diverse species that code for RedB proteins also harbor genes coding for FNR homologs. This cooccurrence indicates that RedB likely has an important role in buffering FNR-mediated energy production in a broad range of species. IMPORTANCE The CRP/FNR family of regulatory proteins constitutes a large collection of related transcription factors, several of which globally regulate cellular energy production. A well-characterized example is FNR (called FnrL in Rhodobacter capsulatus), which is responsible for regulating the expression of numerous genes that promote maximal energy production and growth under anaerobic conditions. In a companion article (N. Ke, J. E. Kumka, M. Fang, B. Weaver, et al., Microbiol Spectr 10:e02353-22, 2022, https://doi.org/10.1128/Spectrum02353-22), we identified a new subgroup of the CRP/FNR family and demonstrated that a member of this new subgroup, called RedB, has a role in limiting cellular energy production. In this study, we show that numerous genes encompassing the RedB regulon significantly overlap genes that are members of the FnrL regulon. Furthermore, 97% of the genes that are members of both the RedB and FnrL regulons are divergently regulated by these two transcription factors. RedB thus functions as a buffer limiting the amount of energy production that is promoted by FnrL.


Asunto(s)
Rhodobacter capsulatus , Rhodobacter sphaeroides , Adenosina Trifosfato/metabolismo , Anaerobiosis , Proteínas Bacterianas/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Fumaratos/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidrógeno/metabolismo , Lípidos , NAD/genética , NAD/metabolismo , Oxidación-Reducción , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Microorganisms ; 10(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35630378

RESUMEN

In Rhodobacter capsulatus, the histidine kinase RegB is believed to phosphorylate its cognate transcriptional factor RegA only under anaerobic conditions. However, transcriptome evidence indicates that RegA regulates 47 genes involved in energy storage, energy production, signaling and transcription, under aerobic conditions. In this study, we provide evidence that RegA is a copper binding protein and that copper promotes the dimerization of RegA under aerobic conditions. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicates that RegA binds Cu1+ and Cu2+ in a 1:1 and 2:1 ratio, respectively. Through LC-MS/MS, ESI-MS and non-reducing SDS-PAGE gels, we show that Cu2+ stimulates disulfide bond formation in RegA at Cys156 in the presence of oxygen. Finally, we used DNase I footprint analysis to demonstrate that Cu2+-mediated covalent dimerized RegA is capable of binding to the ccoN promoter, which drives the expression of cytochrome cbb3 oxidase subunits. This study provides a new model of aerobic regulation of gene expression by RegA involving the formation of an intermolecular disulfide bond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA