Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35039837

RESUMEN

Somaclonal variation arising from tissue culture may provide a valuable resource for the selection of new germplasm, but may not preserve true-to-type characteristics, which is a major concern for germplasm conservation or genome editing. The genomic changes associated with dedifferentiation and somaclonal variation during long-term in vitro culture are largely unknown. Sweet orange was one of the earliest plant species to be cultured in vitro and induced via somatic embryogenesis. We compared four sweet orange callus lines after 30 years of constant tissue culture with newly induced calli by comprehensively determining the single-nucleotide polymorphisms, copy number variations, transposable element insertions, methylomic and transcriptomic changes. We identified a burst of variation during early dedifferentiation, including a retrotransposon outbreak, followed by a variation purge during long-term in vitro culture. Notably, CHH methylation showed a dynamic pattern, initially disappearing during dedifferentiation and then more than recovering after 30 years of in vitro culture. We also analyzed the effects of somaclonal variation on transcriptional reprogramming, and indicated subgenome dominance was evident in the tetraploid callus. We identified a retrotransposon insertion and DNA modification alternations in the potential regeneration-related gene CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 16. This study provides the foundation to harness in vitro variation and offers a deeper understanding of the variation introduced by tissue culture during germplasm conservation, somatic embryogenesis, gene editing, and breeding programs.

3.
Adv Sci (Weinh) ; 7(24): 2002445, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33344132

RESUMEN

Tailoring the organic spacing cations enables developing new Ruddlesden-Popper (RP) perovskites with tunable optoelectronic properties and superior stabilities. However, the formation of highly crystallized RP perovskites can be hindered when the structure of organic cations become complex. Strategies to regulate crystal growing process and grains quality remain to be explored. In this study, mixing Rb+ ions in precursor solution is reported to significantly promote the crystallinity of phenylethylammonium (PEA+) based RP perovskites without impacting on the major orientation of perovskite grains, which leads to increased power conversion efficiencies from 12.5% to 14.6%. It is found that the added Rb+ ions prefer to accumulate at crystal growing front and form Rb+ ions-rich region, which functions as mild crystal growth inhibitor to retard the absorption and diffusion of organic cations at growing front and hence regulates crystal growing rate. The retarded crystal growth benefits PEA-based RP perovskite films with elevated crystal qualities and prolonged carrier recombination lifetimes. Similar increased crystallinity and photovoltaic performance are achieved in other RP perovskites with non-linear organic cations such as phenylmethylammonium (PMA+), 1-(2-naphthyl)-methanammoniun (NMA+) by adding Rb+ ions, demonstrating using a small amount of growth inhibitor as a general route to regulate crystal growth.

4.
Plant J ; 98(5): 912-927, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30739398

RESUMEN

Long intergenic non-coding RNAs (lincRNAs) play important roles in various biological processes in plants. However, little information is known about the evolutionary characteristics of lincRNAs among closely related plant species. Here, we present a large-scale comparative study of lincRNA transcription patterns in nine citrus species. By strand-specific RNA-sequencing, we identified 18 075 lincRNAs (14 575 lincRNA loci) from 34 tissue samples. The results indicated that the evolution of lincRNA transcription is more rapid than that of mRNAs. In total, 82.8-97.6% of sweet orange (Citrus sinensis) lincRNA genes were shown to have homologous sequences in other citrus genomes. However, only 15.5-28.8% of these genes had transcribed homologous lincRNAs in these citrus species, presenting a strong contrast to the high conservation of mRNA transcription (81.6-84.7%). Moreover, primitive and modern citrus lincRNAs were preferentially expressed in reproductive and vegetative organs, respectively. Evolutionarily conserved lincRNAs showed higher expression levels and lower tissue specificity than species-specific lincRNAs. Notably, we observed a similar tissue expression pattern of homologous lincRNAs in sweet orange and pummelo (Citrus grandis), suggesting that these lincRNAs may be functionally conserved and selectively maintained. We also identified and validated a lincRNA with the highest expression in fruit that acts as an endogenous target mimic (eTM) of csi-miR166c, and two lincRNAs that act as a precursor and target of csi-miR166c, respectively. These lincRNAs together with csi-miR166c could form an eTM166-miR166c-targeted lincRNA regulatory network that possibly affects citrus fruit development.


Asunto(s)
Citrus/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN/métodos , Citrus/clasificación , Evolución Molecular , Redes Reguladoras de Genes , Genoma de Planta/genética , MicroARNs/genética , Filogenia , Especificidad de la Especie
5.
Plant J ; 92(2): 263-275, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28749585

RESUMEN

In plant, a few 22-nt miRNAs direct cleavages of their targets and trigger the biogenesis of phased small interfering RNAs (phasiRNAs) in plant. In this study, we characterized a miRNA triggering phasiRNAs generation, miR3954, and explored its downstream target genes and potential function. Our results demonstrated that miR3954 showed specific expression in the flowers of citrus species, and it targeted a NAC transcription factor (Cs7 g22460) and two non-coding RNA transcripts (lncRNAs, Cs1 g09600 and Cs1 g09635). The production of phasiRNAs was detected from transcripts targeted by miR3954, and was further verified in both sequencing data and transient expression experiments. PhasiRNAs derived from the two lncRNAs targeted not only miR3954-targeted NAC gene but also additional NAC homologous genes. No homologous genes of these two lncRNAs were found in plants other than citrus species, implying that this miR3954-lncRNAs-phasiRNAs-NAC pathway is likely citrus-specific. Transgenic analysis indicated that the miR3954-overexpressing lines showed decreased transcripts of lncRNA, elevated abundance of phasiRNAs and reduced expression of NAC genes. Interestingly, the overexpression of miR3954 leads to early flowering in citrus plants. In summary, our results illustrated a model of the regulatory network of miR3954-lncRNA-phasiRNAs-NAC, which may be functionally involved in flowering in citrus.


Asunto(s)
Citrus sinensis/fisiología , Flores/crecimiento & desarrollo , MicroARNs/fisiología , ARN Interferente Pequeño/fisiología , Citrus sinensis/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/fisiología , Plantas Modificadas Genéticamente , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA