Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Methods ; 20(1): 122, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135113

RESUMEN

Virus-Induced Gene Silencing (VIGS) is a versatile tool in plant science, yet its application to non-model species like sunflower demands extensive optimization due to transformation challenges. In this study, we aimed to elucidate the factors that significantly affect the efficiency of Agrobacterium-VIGS in sunflowers. After testing a number of approaches, we concluded that the seed vacuum technique followed by 6 h of co-cultivation produced the most efficient VIGS results. Genotype-dependency analysis revealed varying infection percentages (62-91%) and silencing symptom spreading in different sunflower genotypes. Additionally, we explored the mobility of tobacco rattle virus (TRV) and phenotypic silencing manifestation (photo-bleaching) across different tissues and regions of VIGS-infected sunflower plants. We showed the presence of TRV is not necessarily limited to tissues with observable silencing events. Finally, time-lapse observation demonstrated a more active spreading of the photo-bleached spots in young tissues compared to mature ones. This study not only offers a robust VIGS protocol for sunflowers but also provides valuable insights into genotype-dependent responses and the dynamic nature of silencing events, shedding light on TRV mobility across different plant tissues.

2.
Plants (Basel) ; 11(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36559691

RESUMEN

Transposable elements (TEs) contribute not only to genome diversity but also to transcriptome diversity in plants. To unravel the sources of LTR retrotransposon (RTE) transcripts in sunflower, we exploited a recently developed transposon activation method ('TEgenesis') along with long-read cDNA Nanopore sequencing. This approach allows for the identification of 56 RTE transcripts from different genomic loci including full-length and non-autonomous RTEs. Using the mobilome analysis, we provided a new set of expressed and transpositional active sunflower RTEs for future studies. Among them, a Ty3/Gypsy RTE called SUNTY3 exhibited ongoing transposition activity, as detected by eccDNA analysis. We showed that the sunflower genome contains a diverse set of non-autonomous RTEs encoding a single RTE protein, including the previously described TR-GAG (terminal repeat with the GAG domain) as well as new categories, TR-RT-RH, TR-RH, and TR-INT-RT. Our results demonstrate that 40% of the loci for RTE-related transcripts (nonLTR-RTEs) lack their LTR sequences and resemble conventional eucaryotic genes encoding RTE-related proteins with unknown functions. It was evident based on phylogenetic analysis that three nonLTR-RTEs encode GAG (HadGAG1-3) fused to a host protein. These HadGAG proteins have homologs found in other plant species, potentially indicating GAG domestication. Ultimately, we found that the sunflower retrotranscriptome originated from the transcription of active RTEs, non-autonomous RTEs, and gene-like RTE transcripts, including those encoding domesticated proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA