Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958742

RESUMEN

Encapsulated phosphotriesterase nanoreactors show their efficacy in the prophylaxis and post-exposure treatment of poisoning by paraoxon. A new enzyme nanoreactor (E-nRs) containing an evolved multiple mutant (L72C/Y97F/Y99F/W263V/I280T) of Saccharolobus solfataricus phosphotriesterase (PTE) for in vivo detoxification of organophosphorous compounds (OP) was made. A comparison of nanoreactors made of three- and di-block copolymers was carried out. Two types of morphology nanoreactors made of di-block copolymers were prepared and characterized as spherical micelles and polymersomes with sizes of 40 nm and 100 nm, respectively. The polymer concentrations were varied from 0.1 to 0.5% (w/w) and enzyme concentrations were varied from 2.5 to 12.5 µM. In vivo experiments using E-nRs of diameter 106 nm, polydispersity 0.17, zeta-potential -8.3 mV, and loading capacity 15% showed that the detoxification efficacy against paraoxon was improved: the LD50 shift was 23.7xLD50 for prophylaxis and 8xLD50 for post-exposure treatment without behavioral alteration or functional physiological changes up to one month after injection. The pharmacokinetic profiles of i.v.-injected E-nRs made of three- and di-block copolymers were similar to the profiles of the injected free enzyme, suggesting partial enzyme encapsulation. Indeed, ELISA and Western blot analyses showed that animals developed an immune response against the enzyme. However, animals that received several injections did not develop iatrogenic symptoms.


Asunto(s)
Organofosfatos , Hidrolasas de Triéster Fosfórico , Animales , Organofosfatos/toxicidad , Paraoxon/toxicidad , Hidrolasas de Triéster Fosfórico/química , Nanotecnología
2.
ACS Appl Mater Interfaces ; 14(17): 19241-19252, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35440137

RESUMEN

A nanoreactor containing an evolved mutant of Saccharolobus solfataricus phosphotriesterase (L72C/Y97F/Y99F/W263V/I280T) as a catalytic bioscavenger was made for detoxification of organophosphates. This nanoreactor intended for treatment of organophosphate poisoning was studied against paraoxon (POX). Nanoreactors were low polydispersity polymersomes containing a high concentration of enzyme (20 µM). The polyethylene glycol-polypropylene sulfide membrane allowed for penetration of POX and exit of hydrolysis products. In vitro simulations under second order conditions showed that 1 µM enzyme inactivates 5 µM POX in less than 10 s. LD50-shift experiments of POX-challenged mice through intraperitoneal (i.p.) and subcutaneous (s.c.) injections showed that intravenous administration of nanoreactors (1.6 nmol enzyme) protected against 7 × LD50 i.p. in prophylaxis and 3.3 × LD50 i.p. in post-exposure treatment. For mice s.c.-challenged, LD50 shifts were more pronounced: 16.6 × LD50 in prophylaxis and 9.8 × LD50 in post-exposure treatment. Rotarod tests showed that transitory impaired neuromuscular functions of challenged mice were restored the day of experiments. No deterioration was observed in the following days and weeks. The high therapeutic index provided by prophylactic administration of enzyme nanoreactors suggests that no other drugs are needed for protection against acute POX toxicity. For post-exposure treatment, co-administration of classical drugs would certainly have beneficial effects against transient incapacitation.


Asunto(s)
Intoxicación por Organofosfatos , Hidrolasas de Triéster Fosfórico , Animales , Ratones , Nanotecnología , Intoxicación por Organofosfatos/tratamiento farmacológico , Organofosfatos/toxicidad , Paraoxon
3.
Eur J Med Chem ; 211: 113100, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33385851

RESUMEN

A diverse series of 43 novel "soft antimicrobials" based on quaternary ammonium pyridoxine derivatives which include six-membered acetals and ketals of pyridoxine bound via cleavable linker moieties (amide, ester) with a fragment of fatty carboxylic acid was designed. Nine compounds exhibited in vitro promising antibacterial activity against Gram-positive and Gram-negative bacterial strains with MIC values comparable with reference antiseptics miramistin, benzalkonium chloride and chlorohexidine. On various clinical isolates, the lead compounds 6i and 12a exhibited antibacterial activity comparable with that of benzalkonium chloride while higher than that of miramistin. Moreover, 6i and 12a were able to kill bacteria embedded into the matrix of mono- and dual species biofilms. The treatment of bacterial cells by either 6i and 12a lead to fast depolarization of the membrane suggesting that the membrane is an apparent molecular target of compounds. 6i and 12a were non mutagenic neither in SOS-chromotest nor in Ames test and non-toxic in vivo at acute oral (LD50 > 2000 mg/kg) and cutaneous administration (LD50 > 2500 mg/kg) on mice. Taken together, our data allow suggesting described active compounds as promising starting point for the new antibacterial agents development.


Asunto(s)
Antibacterianos/química , Antibacterianos/síntesis química , Ácidos Grasos/síntesis química , Piridoxina/síntesis química , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/síntesis química , Humanos , Estructura Molecular
4.
Molecules ; 25(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971844

RESUMEN

A series of 108 novel quaternary bis-ammonium pyridoxine derivatives carrying various substituents at the quaternary nitrogen's and acetal carbon was synthesized. Thirteen compounds exhibited antibacterial and antifungal activity (minimum inhibitory concentration (MIC) 0.25-16 µg/mL) comparable or superior than miramistin, benzalkonium chloride, and chlorhexidine. A strong correlation between the lipophilicity and antibacterial activity was found. The most active compounds had logP values in the range of 1-3, while compounds with logP > 6 and logP < 0 were almost inactive. All active compounds demonstrated cytotoxicity comparable with miramistin and chlorhexidine on HEK-293 cells and were three-fold less toxic when compared to benzalkonium chloride. The antibacterial activity of leading compound 5c12 on biofilm-embedded Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli or Pseudomonas aeruginosa was comparable or even higher than that of the benzalkonium chloride. In vivo 5c12was considerably less toxic (LD50 1705 mg/kg) than benzalkonium chloride, miramistine, and chlorhexidine at oral administration on CD-1 mice. An aqueous solution of 5c12 (0.2%) was shown to be comparable to reference drugs efficiency on the rat's skin model. The molecular target of 5c12 seems to be a cellular membrane as other quaternary ammonium salts. The obtained results make the described quaternary bis-ammonium pyridoxine derivatives promising and lead molecules in the development of the new antiseptics with a broad spectrum of antimicrobial activity.


Asunto(s)
Compuestos de Amonio/química , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Piridoxina/síntesis química , Piridoxina/farmacología , Sales (Química)/química , Antiinfecciosos/química , Antiinfecciosos/toxicidad , Biopelículas/efectos de los fármacos , Técnicas de Química Sintética , Células HEK293 , Humanos , Pruebas de Sensibilidad Microbiana , Piridoxina/química , Piridoxina/toxicidad , Relación Estructura-Actividad
5.
Microb Pathog ; 142: 104072, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32068161

RESUMEN

BACKGROUND: Miramistin is a widely used antiseptic, disinfectant and preservative, and one of the most popular antimicrobial agents on pharmaceutical market of the Russian Federation (http://www.dsm.ru/en/news/385/). However, there is a lack of reported systematic data on antibacterial efficacy of this agent obtained in accordance with the international standards. AIM: This paper represents a systematic study of antibacterial properties of miramistin. Another objective of this work is to evaluate and compare the exploratory performance of in vitro and in vivo protocols of antiseptics' efficacy testing using miramistin as the reference antiseptic. METHODS: Antibacterial activity of 0.1% and 0.2% aqueous solutions of miramistin against two museum strains of S. aureus (ATCC 209p) and E. coli (CDC F-50) was studied. Three standard in vitro laboratory tests (microdilution test, suspension test, and metal surface test), and one in vivo test (on rat's skin) were used. The study was conducted in accordance with the international regulatory documents. RESULTS: Miramistin showed high bactericidal activity against the studied bacterial pathogens in the standard in vitro tests. Thus, in the microdilution test it showed expressed activity against S. aureus (MIC 8 µg/ml, MBC 16 µg/ml) and E. coli (MIC 32 µg/ml, MBC 128 µg/ml). In the suspension test, miramistin decreased the amount of colony forming units by at least 6 log10 units for S. aureus, and by at least 4.5 log10 units for E. coli. Transition to the metal surface test led to significant decrease of antibacterial activity by 1-3 log10 units as compared to the suspension test. Further dramatic reduction of antiseptic activity (by 3-4 log10 units) was observed in in vivo rat skin test. Addition of a protein contaminant (bovine serum albumin) led to a general decrease in the effectiveness of miramistin against the test pathogens (typically, by 1-2 log10 units). An interesting effect of exposure time-dependent reversal of miramistin's specificity to the studied Gram-positive S. aureus and the Gram-negative E. coli organisms was observed in the metal surface test. CONCLUSIONS: The results of this work provide systematic data on antibacterial efficacy of miramistin. They also underscore the need in relevant in vivo models for evaluation of antiseptics' efficacy. While the existing in vitro methods can be successfully applied at the discovery stages, it is necessary to use more realistic in vivo models at more advanced development stages. The observed selectivity reversal effect should be taken into account when carrying out the antiseptics' efficacy testing and surface disinfection procedures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA