Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1269: 31-38, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33966191

RESUMEN

Hypoxic ischaemic encephalopathy (HIE) is a significant cause of death and disability. Therapeutic hypothermia (TH) is the only available standard of treatment, but 45-55% of cases still result in death or neurodevelopmental disability following TH. This work has focussed on developing a new brain tissue physiology and biochemistry systems biology model that includes temperature effects, as well as a Bayesian framework for analysis of model parameter estimation. Through this, we can simulate the effects of temperature on brain tissue oxygen delivery and metabolism, as well as analyse clinical and experimental data to identify mechanisms to explain differing behaviour and outcome. Presented here is an application of the model to data from two piglets treated with TH following hypoxic-ischaemic injury showing different responses and outcome following treatment. We identify the main mechanism for this difference as the Q10 temperature coefficient for metabolic reactions, with the severely injured piglet having a median posterior value of 0.133 as opposed to the mild injury value of 5.48. This work demonstrates the use of systems biology models to investigate underlying mechanisms behind the varying response to hypothermic treatment.


Asunto(s)
Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Animales , Teorema de Bayes , Hipoxia-Isquemia Encefálica/terapia , Oxígeno , Porcinos , Biología de Sistemas
2.
Adv Exp Med Biol ; 1232: 339-345, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31893429

RESUMEN

We used a miniature broadband NIRS system to monitor concentration changes in brain oxygenation (oxy- and deoxy- haemoglobin [HbO2], [HHb]) and oxidised cytochrome-c-oxidase ([oxCCO]) during a high +Gz acceleration, induced by a human centrifuge, on two healthy experienced volunteers (2 male, 34 and 37 years). We performed a sequence of several +Gz exposures that were terminated at the onset of visual symptoms (loss of peripheral vision). Systemic parameters were recorded (i.e. heart rate, blood pressure and arterial saturation), and brain tissue blood volume changes ([HbT] = [HbO2] + [HHb]) and oxygen delivery ([HbDiff] = [HbO2] - [HHb]) were calculated. Volunteer 1 demonstrated a decrease in [HbT] of -3.49 ± 0.02 µMol and [HbDiff] of -3.23 ± 0.44 µMol, and an increase of [oxCCO] of 0.42 ± 0.01µMol. Volunteer 2 demonstrated a decrease in [HbDiff] of -4.37 ± 0.23 µMol, and no significant change in [HbT] (0.53 ± 0.06 µMol) and [oxCCO] (0.09 ± 0.06 µMol). The variability of the brain metabolic response was related to the level of ischaemia, suggesting that suppression of metabolism was due to lack of glucose substrate delivery rather than oxygen availability.


Asunto(s)
Aceleración , Complejo IV de Transporte de Electrones , Hemodinámica , Espectroscopía Infrarroja Corta , Adulto , Encéfalo/enzimología , Encéfalo/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Voluntarios Sanos , Humanos , Masculino , Estrés Oxidativo , Oximetría/instrumentación , Oxígeno/metabolismo
3.
Adv Exp Med Biol ; 1072: 7-12, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30178316

RESUMEN

A novel multi-wavelength broadband near infrared spectroscopy (NIRS) system has been employed to simultaneously measure haemodynamic changes alongside changes in cellular oxygen utilization by measurement of oxidation state of mitochondrial enzyme cytochrome-c-oxidase (oxCCO). The aim of this study was to investigate the role of oxCCO in neural responses to functional activation in infants. Studies were performed using a NIRS broadband system in 33 typically developing infants aged between 4 and 6 months. Responses were recorded over the right temporal lobe while infants were presented with engaging videos containing social and non-social content. Changes in the concentration of oxyhaemoglobin (Δ[HbO2]), deoxyhaemoglobin (Δ[HHb]) and Δ[oxCCO] were calculated using changes in attenuation of light at 120 wavelengths between 780 and 900 nm using the UCLn algorithm. The algorithm was also used to fit (a) HbO2 and HHb spectra (2 component fit) and (b) HbO2, HHb and oxCCO (3 component fit) to the change in attenuation occurring within an experimental block in different participants. Residuals resulting from these two fits were compared with oxidized-minus reduced CCO spectrum, calculated using the CCO specific extinction coefficient. A significant increase in oxCCO was found in response to the social stimuli (maximum increase 0.238 ± 0.13 µM). Residuals analysis showed that the best fits were achieved when oxCCO was included as a tissue chromophore. These results are the first reported significant change in oxCCO to stimulus-evoked activation in infants and may reveal vital information about oxygen metabolism during functional activation in the developing human brain.


Asunto(s)
Encéfalo/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Espectroscopía Infrarroja Corta/métodos , Humanos , Lactante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA