Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 597: 71-76, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35124462

RESUMEN

Osteoblasts participate in both bone formation through the synthesis of extracellular matrix and osteoclast differentiation through the expression of osteoclast differentiation factor. Osteoblasts communicate with each other via gap junctions (GJ), which enable small molecules, such as cAMP, to move to adjacent cells. Therefore, we focused on the role of cAMP propagation between osteoblasts via GJ in the osteoclast-supporting activity of osteoblasts. Osteoclast-supporting activity was evaluated by a co-culture system of osteoblasts with bone marrow-derived mononuclear cells. In this system, ablation of Gja1, a gene encoding connexin 43, in osteoblasts promoted osteoclastogenesis induced by prostaglandin E2 (PGE2). A phosphodiesterase 4 inhibitor increased both osteoclastogenesis and the intracellular cAMP concentration ([cAMP]i) in osteoblasts. Individual cell analysis of [cAMP]i in osteoblasts revealed different responses of each osteoblast to PGE2. Moreover, measurement of real-time [cAMP]i demonstrated cAMP movement from cell to cell via GJ. The inhibition of GJ resulted in the upregulation of [cAMP]i in osteoblasts stimulated by PGE2. This study suggested that GJ intercellular communication exerts protective effects against excess osteoclastogenesis via cAMP movement between osteoblasts.

2.
Mol Cell Biochem ; 476(7): 2623-2632, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33660186

RESUMEN

In many types of tumor cells, cell communication via gap junction is decreased or missing. Therefore, cancer cells acquire unique cytosolic environments that differ from those of normal cells. This study assessed the differences in microRNA (miRNA) expression between cancer and normal cells. MicroRNA microarray analysis revealed five miRNAs that were highly expressed in normal astrocytes compared with that in C6 gliomas. To determine whether these miRNAs could pass through gap junctions, connexin 43 was expressed in C6 glioma cells and co-cultured with normal astrocytes. The co-culture experiment showed the possibility that miR-152-3p and miR-143-3p propagate from normal astrocytes to C6 glioma in connexin 43-dependent and -independent manners, respectively. Moreover, we established C6 glioma cells that expressed miR-152-3p or miR-143-3p. Although the proliferation of these miRNA-expressing C6 glioma cells did not differ from that of empty vectors introduced in C6 glioma cells, cell migration and invasion were significantly decreased in C6 glioma cells expressing miR-152-3p or miR-143-3p. These results suggest the possibility that miRNA produced by normal cells attenuates tumor progression through connexin 43-dependent and -independent mechanisms.


Asunto(s)
Astrocitos/metabolismo , Conexina 43/metabolismo , Glioma/metabolismo , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Animales , Línea Celular Tumoral , Conexina 43/genética , Glioma/genética , Células HEK293 , Humanos , Ratones , MicroARNs/genética , Proteínas de Neoplasias/genética , ARN Neoplásico/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA