Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35161132

RESUMEN

The paper presents a method of forecasting the product surface topography after five-axis machining with a lens-shaped end-mill. Surface roughness is one of the key parameters considered when assessing the effectiveness of the machining process, especially in the aviation, automotive, tooling and medical equipment industries. The developed method, the first published, presented in the paper is based on the analytical equations of the trajectory of the cutting edge motion, on the basis of which the cutter action surface is generated. The developed model takes into account: cutting depth, cutting width, feed, lead angle and radial runout. Experimental studies were conducted using three different materials: 40HM steel, Al7035 aluminum alloy and Ti Grade 5 titanium alloy. Various values of the cutting width parameters and different feeds were used in the tests. Based on the results of the experimental tests, an empirical model (response surface model) was determined and was then used to verify the simulation model. The simulation results and the results of experimental tests were compared and conclusions were drawn regarding the developed models. The developed models supported by numerical simulation can be used to approximately estimate the influence of the width of cut br and feed ft on selected height characteristics Sa and Sz^ of the geometric structure of the surface (GSS) after machining with a lens-shaped end-mill in terms of the process parameters adopted in the tests. It was found that the influence of the ft on the Sa and Sz^ is greater for small values of br. The effect of br is greater with lower ft values. The cutting width br has the greatest influence on Sa and Sz^, and ft and the interaction of these parameters has the least influence.

2.
Materials (Basel) ; 14(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375090

RESUMEN

Measurements of the active surface microgeometry of the grinding wheel by contact and optical methods are commonly used to obtain a cloud of points representing the surface of the examined tool. Parameters that can be determined on the basis of the above-mentioned measurements can be universal parameters, which are commonly used to assess the geometric structure of a surface or parameters taking into account specific properties of the grinding wheel active surface (GWAS) structure. This article proposes a methodology for determining the average level of binder, which allows the definition the cut-off level required to separate from the measurement data: (i) the areas representing grains, (ii) the areas of gumming up of the grinding wheel, and (iii) deep cavities in approximately the same places on the investigated grinding wheel, regardless of the degree of its wear. This, in turn, allows one to track changes in characteristic parameters computed from measurements of texture in the above-mentioned areas due to different GWAS wear processes. The research was based on the analysis of data obtained from measurements of single-layer grinding wheels using the replica technique. The adopted measurement methodology enables measurement of approximately the same (94% coverage) areas of the GWAS at four stages of grinding wheel operation. Errors that were computed related to the determination of the volume of abrasive on the GWAS at various stages of wear using the developed methodology were lower, on average, by 48% compared to the automatic recognition of islands made with a commercial software.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA