Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Math Biosci Eng ; 20(5): 9410-9422, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-37161249

RESUMEN

This work deals with a systematic approach for the investigation of compound difference anti-synchronization (CDAS) scheme among chaotic generalized Lotka-Volterra biological systems (GLVBSs). First, an active control strategy (ACS) of nonlinear type is described which is specifically based on Lyapunov's stability analysis (LSA) and master-slave framework. In addition, the biological control law having nonlinear expression is constructed for attaining asymptotic stability pattern for the error dynamics of the discussed GLVBSs. Also, simulation results through MATLAB environment are executed for illustrating the efficacy and correctness of considered CDAS approach. Remarkably, our attained analytical outcomes have been in outstanding conformity with the numerical outcomes. The investigated CDAS strategy has numerous significant applications to the fields of encryption and secure communication.

2.
Entropy (Basel) ; 24(4)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35455192

RESUMEN

In this manuscript, we systematically investigate projective difference synchronization between identical generalized Lotka-Volterra biological models of integer order using active control and parameter identification methods. We employ Lyapunov stability theory (LST) to construct the desired controllers, which ensures the global asymptotical convergence of a trajectory following synchronization errors. In addition, simulations were conducted in a MATLAB environment to illustrate the accuracy and efficiency of the proposed techniques. Exceptionally, both experimental and theoretical results are in excellent agreement. Comparative analysis between the considered strategy and previously published research findings is presented. Lastly, we describe an application of our considered combination difference synchronization in secure communication through numerical simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA