Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes Dev ; 37(7-8): 303-320, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37024284

RESUMEN

MYC's key role in oncogenesis and tumor progression has long been established for most human cancers. In melanoma, its deregulated activity by amplification of 8q24 chromosome or by upstream signaling coming from activating mutations in the RAS/RAF/MAPK pathway-the most predominantly mutated pathway in this disease-turns MYC into not only a driver but also a facilitator of melanoma progression, with documented effects leading to an aggressive clinical course and resistance to targeted therapy. Here, by making use of Omomyc, the most characterized MYC inhibitor to date that has just successfully completed a phase I clinical trial, we show for the first time that MYC inhibition in melanoma induces remarkable transcriptional modulation, resulting in severely compromised tumor growth and a clear abrogation of metastatic capacity independently of the driver mutation. By reducing MYC's transcriptional footprint in melanoma, Omomyc elicits gene expression profiles remarkably similar to those of patients with good prognosis, underlining the therapeutic potential that such an approach could eventually have in the clinic in this dismal disease.


Asunto(s)
Melanoma , Humanos , Pronóstico , Melanoma/genética , Transducción de Señal , Carcinogénesis , Transformación Celular Neoplásica , Proteínas Proto-Oncogénicas c-myc/metabolismo
2.
Cancers (Basel) ; 15(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36765784

RESUMEN

MYC is an oncoprotein causally involved in the majority of human cancers and a most wanted target for cancer treatment. Omomyc is the best-characterized MYC dominant negative to date. In the last years, it has been developed into a therapeutic miniprotein for solid tumor treatment and recently reached clinical stage. However, since the in vivo stability of therapeutic proteins, especially within the tumor vicinity, can be affected by proteolytic degradation, the perception of Omomyc as a valid therapeutic agent has been often questioned. In this study, we used a mass spectrometry approach to evaluate the stability of Omomyc in tumor biopsies from murine xenografts following its intravenous administration. Our data strongly support that the integrity of the functional domains of Omomyc (DNA binding and dimerization region) remains preserved in the tumor tissue for at least 72 hours following administration and that the protein shows superior pharmacokinetics in the tumor compartment compared with blood serum.

3.
Cancer Res Commun ; 2(2): 110-130, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-36860495

RESUMEN

MYC's role in promoting tumorigenesis is beyond doubt, but its function in the metastatic process is still controversial. Omomyc is a MYC dominant negative that has shown potent antitumor activity in multiple cancer cell lines and mouse models, regardless of their tissue of origin or driver mutations, by impacting on several of the hallmarks of cancer. However, its therapeutic efficacy against metastasis has not been elucidated yet. Here we demonstrate for the first time that MYC inhibition by transgenic Omomyc is efficacious against all breast cancer molecular subtypes, including triple-negative breast cancer, where it displays potent antimetastatic properties both in vitro and in vivo. Importantly, pharmacologic treatment with the recombinantly produced Omomyc miniprotein, recently entering a clinical trial in solid tumors, recapitulates several key features of expression of the Omomyc transgene, confirming its clinical applicability to metastatic breast cancer, including advanced triple-negative breast cancer, a disease in urgent need of better therapeutic options. Significance: While MYC role in metastasis has been long controversial, this manuscript demonstrates that MYC inhibition by either transgenic expression or pharmacologic use of the recombinantly produced Omomyc miniprotein exerts antitumor and antimetastatic activity in breast cancer models in vitro and in vivo, suggesting its clinical applicability.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Línea Celular , Unión Proteica , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc
4.
Life Sci Alliance ; 4(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33653688

RESUMEN

The huge cadre of genes regulated by Myc has obstructed the identification of critical effectors that are essential for Myc-driven tumorigenesis. Here, we describe how only the lack of the receptor Fzd9, previously identified as a Myc transcriptional target, impairs sustained tumor expansion and ß-cell dedifferentiation in a mouse model of Myc-driven insulinoma, allows pancreatic islets to maintain their physiological structure and affects Myc-related global gene expression. Importantly, Wnt signaling inhibition in Fzd9-competent mice largely recapitulates the suppression of proliferation caused by Fzd9 deficiency upon Myc activation. Together, our results indicate that the Wnt signaling receptor Fzd9 is essential for Myc-induced tumorigenesis in pancreatic islets.


Asunto(s)
Adenoma de Células de los Islotes Pancreáticos/fisiopatología , Carcinogénesis/metabolismo , Receptores Frizzled/metabolismo , Adenoma de Células de los Islotes Pancreáticos/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Femenino , Receptores Frizzled/genética , Receptores Frizzled/fisiología , Genes myc/genética , Genes myc/fisiología , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA