Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Lang ; 119(3): 136-48, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21641022

RESUMEN

The present functional magnetic resonance imaging (fMRI) study was designed, in order to investigate the neural substrates involved in the audiovisual processing of disyllabic German words and pseudowords. Twelve dyslexic and 13 nondyslexic adults performed a lexical decision task while stimuli were presented unimodally (either aurally or visually) or bimodally (audiovisually simultaneously). The behavioral data collected during the experiment evidenced more accurate processing for bimodally than for unimodally presented stimuli irrespective of group. Words were processed faster than pseudowords. Notably, no group differences have been found for either accuracy or for reaction times. With respect to brain responses, nondyslexic compared to dyslexic adults elicited stronger hemodynamic responses in the leftward supramarginal gyrus (SMG), as well as in the right hemispheric superior temporal sulcus (STS). Furthermore, dyslexic compared to nondyslexic adults showed reduced responses to only aurally presented signals and enhanced hemodynamic responses to audiovisual, as well as visual stimulation in the right anterior insula. Our behavioral results evidence that the two groups easily identified the two-syllabic proper nouns that we provided them with. Our fMRI results indicate that dyslexics show less neuronal involvement of heteromodal and extrasylvian regions, namely, the STS, SMG, and insula when decoding phonological information. We posit that dyslexic adults evidence deficient functioning of word processing, which could possibly be attributed to deficits in phoneme to grapheme mapping. This problem may be caused by impaired audiovisual processing in multimodal areas.


Asunto(s)
Percepción Auditiva/fisiología , Mapeo Encefálico , Encéfalo/fisiopatología , Dislexia/fisiopatología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
2.
Ann Dyslexia ; 61(2): 177-200, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21562919

RESUMEN

Our spelling training software recodes words into multisensory representations comprising visual and auditory codes. These codes represent information about letters and syllables of a word. An enhanced version, developed for this study, contains an additional phonological code and an improved word selection controller relying on a phoneme-based student model. We investigated the spelling behavior of children by means of learning curves based on log-file data of the previous and the enhanced software version. First, we compared the learning progress of children with dyslexia working either with the previous software (n = 28) or the adapted version (n = 37). Second, we investigated the spelling behavior of children with dyslexia (n = 37) and matched children without dyslexia (n = 25). To gain deeper insight into which factors are relevant for acquiring spelling skills, we analyzed the influence of cognitive abilities, such as attention functions and verbal memory skills, on the learning behavior. All investigations of the learning process are based on learning curve analyses of the collected log-file data. The results evidenced that those children with dyslexia benefit significantly from the additional phonological cue and the corresponding phoneme-based student model. Actually, children with dyslexia improve their spelling skills to the same extent as children without dyslexia and were able to memorize phoneme to grapheme correspondence when given the correct support and adequate training. In addition, children with low attention functions benefit from the structured learning environment. Generally, our data showed that memory sources are supportive cognitive functions for acquiring spelling skills and for using the information cues of a multi-modal learning environment.


Asunto(s)
Estimulación Acústica/métodos , Dislexia/fisiopatología , Aprendizaje/fisiología , Estimulación Luminosa/métodos , Lectura , Programas Informáticos , Niño , Dislexia/psicología , Femenino , Humanos , Masculino , Desempeño Psicomotor/fisiología
3.
Int J Psychophysiol ; 77(1): 59-69, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20420862

RESUMEN

The present Event-Related Potential (ERP) study aimed to investigate group differences in the early processing stages of 36 dyslexic and 24 non-dyslexic 8-12 year old children performing a lexical decision (word/pseudoword judgment) task. Our data showed larger amplitudes of negative-going waveforms in non-dyslexic children than dyslexic children over occipital/occipitotemporal electrodes at about 220 ms after stimulus onset. This electrophysiological response has previously been identified in adult readers and labeled as the N170 component. Notably, as reflected by the topographic maps children irrespective of group processed the linguistic stimuli bilaterally and we did not observe any differences in ERP parameters in words and pseudowords within groups. Contrarily, behavioral responses indicate that words were more quickly recognized than pseudowords irrespective of group. By applying post-hoc ROI analyses based on a source estimation approach (sLORETA) we observed that non-dyslexic participants, when compared to dyslexic children, demonstrated significantly stronger current density over the left hemispheric inferior temporal lobe when processing pseudowords. We concluded that impaired reading is reflected by the decreased amplitude of the early lexical component N170. The lack of a left hemispheric processing preference in both groups and similar activation for words and pseudowords can be considered a lack of reading experience and less established reading system in children. Our results indicate that dyslexic children commit fewer specialized neuronal circuits for processing print and confirm the reasoning that acquiring reading skills requires cortical reorganization over occipitotemporal regions.


Asunto(s)
Dislexia/fisiopatología , Potenciales Evocados/fisiología , Estimulación Luminosa/métodos , Lectura , Lóbulo Temporal/fisiología , Mapeo Encefálico/métodos , Niño , Femenino , Humanos , Masculino
4.
Restor Neurol Neurosci ; 25(3-4): 355-69, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17943011

RESUMEN

PURPOSE: Several attempts have been made to remediate developmental dyslexia using various training environments. Based on the well-known retrieval structure model, the memory strength of phonemes and graphemes should be strengthened by visual and auditory associations between graphemes and phonemes. Using specifically designed training software, we examined whether establishing a multitude of visuo-auditory associations might help to mitigate writing errors in children with developmental dyslexia. METHODS: Forty-three children with developmental dyslexia and 37 carefully matched normal reading children performed a computer-based writing training (15-20 minutes 4 days a week) for three months with the aim to recode a sequential textual input string into a multi-sensory representation comprising visual and auditory codes (including musical tones). The study included four matched groups: a group of children with developmental dyslexia (n=20) and a control group (n=18) practiced with the training software in the first period (3 months, 15-20 minutes 4 days a week), while a second group of children with developmental dyslexia (n=23) (waiting group) and a second control group (n=19) received no training during the first period. In the second period the children with developmental dyslexia and controls who did not receive training during the first period now took part in the training. RESULTS: Children with developmental dyslexia who did not perform computer-based training during the first period hardly improved their writing skills (post-pre improvement of 0-9%), the dyslexic children receiving training strongly improved their writing skills (post-pre improvement of 19-35%). The group who did the training during the second period also revealed improvement of writing skills (post-pre improvement of 27-35%). Interestingly, we noticed a strong transfer from trained to non-trained words in that the children who underwent the training were also better able to write words correctly that were not part of the training software. In addition, even non-impaired readers and writers (controls) benefited from this training. CONCLUSION: Three-month of visual-auditory multimedia training strongly improved writing skills in children with developmental dyslexia and non-dyslexic children. Thus, according to the retrieval structure model, multi-sensory training using visual and auditory cues enhances writing performance in children with developmental dyslexia and non-dyslexic children.


Asunto(s)
Instrucción por Computador , Dislexia/psicología , Dislexia/terapia , Aprendizaje , Estimulación Acústica , Niño , Femenino , Escritura Manual , Humanos , Masculino , Pruebas Neuropsicológicas , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Programas Informáticos , Escalas de Wechsler
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA