Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(26): 23501-23509, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37426205

RESUMEN

Although perovskite solar cells (PSCs) have reached a record high conversion efficiency of 25.7%, the materials used to fabricate them invoke costly hole-transporting materials, such as spiro-OMeTAD, and expensive gold back contacts. The cost of fabrication of a solar cell or any other practical device is an important issue in their practical applications. In this study, we describe the fabrication of a low-cost, mesoscopic PSC, eliminating the use of expensive p-type semiconductors and substituting them with electronically conducting activated carbon, and the gold back contact with expanded graphite. The activated carbon hole transporting material was derived from readily available coconut shells and the expanded graphite from graphite attached to rock pieces of graphite vein banks. We drastically reduced the overall cell fabrication cost using these low-cost materials and added commercial value to discarded graphite and coconut shells. Under ambient conditions, our PSC gives a conversion efficiency of 8.60 ± 0.10 % at 1.5 AM simulated sunlight. We have identified the lower fill factor as the limiting factor for the low conversion efficiency. We believe that the lower cost of the materials used and the deceptively simple powder pressing method would compensate for the relatively lower conversion efficiency in its practical application.

2.
RSC Adv ; 11(5): 2854-2865, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35424206

RESUMEN

Carbon from biomass as an active material for supercapacitor electrodes has attracted much interest due to its environmental soundness, abundance, and porous nature. In this context, activated carbon prepared from coconut shells via a simple activation process (water or steam as activation agents) was used as an active material in electrodes for eco-friendly supercapacitors. X-ray diffraction (XRD), Raman spectroscopy, conductivity, scanning electron microscopy (SEM), N2 sorption and thermogravimetry coupled to mass spectrometry (TGA-MS) studies revealed that activated carbon produced by this approach exhibit a graphitic phase, a high surface area, and large pore volume. The energy storage properties of activated carbon electrodes correlate with the morphological and structural properties of the precursor material. In particular, electrodes made of activated carbon exhibiting the largest Brunauer-Emmett-Teller (BET) surface area, i.e. 1998 m2 g-1, showed specific capacitance of 132.3 F g-1 in aqueous electrolyte (1.5 M H2SO4), using expanded graphite sheets as current collector substrates. Remarkably, this sample in a configuration with ionic liquid (1-methyl-1-propy-pyrrolizinium bis(fluorosulfonyl)mide) (MPPyFSI) as electrolyte and a polyethylene separator displayed an outstanding storage capability and energy-power handling capability of 219.4 F g-1 with a specific energy of 92.1 W h kg-1 and power density of 2046.9 W kg-1 at 1 A g-1 and maintains ultra-high values at 30 A g-1 indicating the ability for a broad potential of energy and power related applications. To the best of our knowledge, these values are the highest ever reported for ionic liquid-based supercapacitors with activated carbon obtained from the biomass of coconut shells.

3.
Hear Res ; 367: 124-128, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30107299

RESUMEN

The role of auditory efferent feedback from the medial olivocochlear system (MOCS) and the middle-ear-muscle (MEM) reflex in tonal detection tasks for humans in the presence of noise is not clearly understood. Past studies have yielded inconsistent results on the relationship between efferent feedback and tonal detection thresholds. This study attempts to address this inconsistency. Fifteen human subjects with normal hearing participated in an experiment where they were asked to identify an alarm signal in the presence of 80 dBA background (pink) noise. Masked detection thresholds were estimated using the method of two-interval forced choice (2IFC). Contralateral suppression of transient-evoked otoacoustic emissions (TEOAEs) was measured to estimate the strength of auditory efferent feedback. Subsequent correlation analysis revealed that the contralateral suppression of TEOAEs was significantly negatively correlated (r = -0.526, n = 15, p = 0.0438) with alarm-in-noise (AIN) detection thresholds under negative signal-to-noise conditions. The result implies that the stronger the auditory efferent feedback, the worse the detection thresholds and thus the poorer the tonal detection performance in the presence of loud noise.


Asunto(s)
Estimulación Acústica/métodos , Vías Auditivas/fisiología , Umbral Auditivo , Cóclea/fisiología , Ruido/efectos adversos , Núcleo Olivar/fisiología , Enmascaramiento Perceptual , Percepción de la Altura Tonal , Reflejo Acústico , Detección de Señal Psicológica , Estapedio/inervación , Vías Eferentes/fisiología , Femenino , Humanos , Masculino , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA