Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Evol Bioinform Online ; 14: 1176934318761368, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29551886

RESUMEN

The evolution of bias in synonymous codon usage in chosen monkeypox viral genomes and the factors influencing its diversification have not been reported so far. In this study, various trends associated with synonymous codon usage in chosen monkeypox viral genomes were investigated, and the results are reported. Identification of factors that influence codon usage in chosen monkeypox viral genomes was done using various codon usage indices, such as the relative synonymous codon usage, the effective number of codons, and the codon adaptation index. The Spearman rank correlation analysis and a correspondence analysis were used for correlating various factors with codon usage. The results revealed that mutational pressure due to compositional constraints, gene expression level, and selection at the codon level for utilization of putative optimal codons are major factors influencing synonymous codon usage bias in monkeypox viral genomes. A cluster analysis of relative synonymous codon usage values revealed a grouping of more virulent strains as one major cluster (Central African strains) and a grouping of less virulent strains (West African strains) as another major cluster, indicating a relationship between virulence and synonymous codon usage bias. This study concluded that a balance between the mutational pressure acting at the base composition level and the selection pressure acting at the amino acid level frames synonymous codon usage bias in the chosen monkeypox viruses. The natural selection from the host does not seem to have influenced the synonymous codon usage bias in the analyzed monkeypox viral genomes.

2.
Bioinform Biol Insights ; 10: 167-84, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27688709

RESUMEN

Chaetognatha is a minor phylum, comprising transparent marine invertebrates varying in size from 0.5 to 12 cm. The exact phylogenetic position of Chaetognatha in Metazoa has not been deciphered as some embryological characteristics place chaetognaths among deuterostomes and some morphological characteristics place these among protostomes. In this study, the major factors that drive synonymous codon usage bias (SCUB) in the mitogenomes of representative species of Chaetognatha and chosen species of other closely related phyla were analyzed. Spearman's rank correlation analyses of nucleotide contents suggested that mutational pressure and selection were acting in all examined mitogenomes but with varying intensities. The quantification of SCUB using effective number of codons vs. GC composition at the third codon position (GC3) plot suggested that mutational pressure due to GC compositional constraints might be one of the major influencing forces driving the SCUB in all chaetognaths except Sagitta enflata. However, neutrality plots revealed no significant correlation between GC3 and cumulative GC content at first and second codon positions (GC12) in all other species, except in Daphnia pulex. The parity rule 2 bias plot showed that significant compositional differences existed between C and G, as well as between A and T, contents in most of the protein-coding genes (PCGs) and, comparatively, A and T contents were used more proportionally than C and G contents in all chosen mitogenomes. Chi-square analysis revealed the presence of putative optimal codons in all species, except in S. enflata. The correspondence analysis identified that mutational pressure and selection act on the mitogenomes of the selected chaetognaths and other phyla with varying intensities. The cluster analysis based on relative synonymous codon usage (RSCU) values revealed that RSCU variations in the PCGs of mitogenomes of chaetognaths are more comparable with those of protostomes. Apart from mutational pressure and selection, certain unknown selective forces might be acting on the PCGs in the analyzed mitogenomes as the phenomenon of SCUB could not be explained by mutational pressure, by selection, or by both.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA