Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(20): 8760-8770, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38717860

RESUMEN

Sinking or floating is the natural state of planktonic organisms and particles in the ocean. Simulating these conditions is critical when making measurements, such as respirometry, because they allow the natural exchange of substrates and products between sinking particles and water flowing around them and prevent organisms that are accustomed to motion from changing their metabolism. We developed a rotating incubator, the RotoBOD (named after its capability to rotate and determine biological oxygen demand, BOD), that uniquely enables automated oxygen measurements in small volumes while keeping the samples in their natural state of suspension. This allows highly sensitive rate measurements of oxygen utilization and subsequent characterization of single particles or small planktonic organisms, such as copepods, jellyfish, or protists. As this approach is nondestructive, it can be combined with several further measurements during and after the incubation, such as stable isotope additions and molecular analyses. This makes the instrument useful for ecologists, biogeochemists, and potentially other user groups such as aquaculture facilities. Here, we present the technical background of our newly developed apparatus and provide examples of how it can be utilized to determine oxygen production and consumption in small organisms and particles.


Asunto(s)
Oxígeno , Oxígeno/metabolismo , Consumo de Oxígeno , Animales , Plancton/metabolismo , Copépodos/metabolismo
2.
Sci Data ; 11(1): 52, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195581

RESUMEN

The Mediterranean Sea has been sampled irregularly by research vessels in the past, mostly by national expeditions in regional waters. To monitor the hydrographic, biogeochemical and circulation changes in the Mediterranean Sea, a systematic repeat oceanographic survey programme called Med-SHIP was recommended by the Mediterranean Science Commission (CIESM) in 2011, as part of the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). Med-SHIP consists of zonal and meridional surveys with different frequencies, where comprehensive physical and biogeochemical properties are measured with the highest international standards. The first zonal survey was done in 2011 and repeated in 2018. In addition, a network of meridional (and other key) hydrographic sections were designed: the first cycle of these sections was completed in 2016, with three cruises funded by the EU project EUROFLEETS2. This paper presents the physical and chemical data of the meridional and key transects in the Western and Eastern Mediterranean Sea collected during those cruises.

3.
Mol Ecol Resour ; 24(1): e13889, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38010882

RESUMEN

Thiotrophic symbioses between sulphur-oxidizing bacteria and various unicellular and metazoan eukaryotes are widespread in reducing marine environments. The giant colonial ciliate Zoothamnium niveum, however, is the only host of thioautotrophic symbionts that has been cultivated along with its symbiont, the vertically transmitted ectosymbiont Candidatus Thiobius zoothamnicola (short Thiobius). Because theoretical predictions posit a smaller genome in vertically transmitted endosymbionts compared to free-living relatives, we investigated whether this is true also for an ectosymbiont. We used metagenomics to recover the high-quality draft genome of this bacterial symbiont. For comparison we have also sequenced a closely related free-living cultured but not formally described strain Milos ODIII6 (short ODIII6). We then performed comparative genomics to assess the functional capabilities at gene, metabolic pathway and trait level. 16S rRNA gene trees and average amino acid identity confirmed the close phylogenetic relationship of both bacteria. Indeed, Thiobius has about a third smaller genome than its free-living relative ODIII6, with reduced metabolic capabilities and fewer functional traits. The functional capabilities of Thiobius were a subset of those of the more versatile ODIII6, which possessed additional genes for oxygen, sulphur and hydrogen utilization and for the acquisition of phosphorus illustrating features that may be adaptive for the unstable environmental conditions at hydrothermal vents. In contrast, Thiobius possesses genes potentially enabling it to utilize lactate and acetate heterotrophically, compounds that may be provided as byproducts by the host. The present study illustrates the effect of strict host-dependence of a bacterial ectosymbiont on genome evolution and host adaptation.


Asunto(s)
Bacterias , Genómica , Animales , Filogenia , ARN Ribosómico 16S/genética , Simbiosis , Azufre/metabolismo
4.
Nat Commun ; 12(1): 3235, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050175

RESUMEN

Anaerobic oxidation of ammonium (anammox) in oxygen minimum zones (OMZs) is a major pathway of oceanic nitrogen loss. Ammonium released from sinking particles has been suggested to fuel this process. During cruises to the Peruvian OMZ in April-June 2017 we found that anammox rates are strongly correlated with the volume of small particles (128-512 µm), even though anammox bacteria were not directly associated with particles. This suggests that the relationship between anammox rates and particles is related to the ammonium released from particles by remineralization. To investigate this, ammonium release from particles was modelled and theoretical encounters of free-living anammox bacteria with ammonium in the particle boundary layer were calculated. These results indicated that small sinking particles could be responsible for ~75% of ammonium release in anoxic waters and that free-living anammox bacteria frequently encounter ammonium in the vicinity of smaller particles. This indicates a so far underestimated role of abundant, slow-sinking small particles in controlling oceanic nutrient budgets, and furthermore implies that observations of the volume of small particles could be used to estimate N-loss across large areas.


Asunto(s)
Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Ciclo del Nitrógeno , Nitrógeno/metabolismo , Anaerobiosis , Océanos y Mares , Oxidación-Reducción , Perú , Agua de Mar/química , Agua de Mar/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA