Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Sci Sports Exerc ; 56(7): 1225-1232, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377006

RESUMEN

BACKGROUND: Resistance training confers numerous health benefits that are mediated in part by circulating factors. Toward an enhanced molecular understanding, there is growing interest in a class of signaling biomarkers called extracellular vesicles (EV). EVs support physiological adaptations to exercise by transporting their cargo (e.g., microRNA (miRNA)) to target cells. Previous studies of changes in EV cargo have focused on aerobic exercise, with limited data examining the effects of resistance exercise. We examined the effect of acute resistance exercise on circulating EV miRNAs and their predicted target pathways. METHODS: Ten participants (5 men; age, 26.9 ± 5.5 yr; height, 173.4 ± 10.5 cm; body mass, 74.0 ± 11.1 kg; body fat, 25.7% ± 11.6%) completed an acute heavy resistance exercise test (AHRET) consisting of six sets of 10 repetitions of back squats using 75% one-repetition maximum. Pre-/post-AHRET, EVs were isolated from plasma using size exclusion chromatography, and RNA sequencing was performed. Differentially expressed miRNAs between pre- and post-AHRET EVs were analyzed using Ingenuity Pathway Analysis to predict target messenger RNAs and their target biological pathways. RESULTS: Overall, 34 miRNAs were altered by AHRET ( P < 0.05), targeting 4895 mRNAs, with enrichment of 175 canonical pathways ( P < 0.01), including 12 related to growth/metabolism (p53, IGF-I, STAT3, PPAR, JAK/STAT, growth hormone, WNT/ß-catenin, ERK/MAPK, AMPK, mTOR, and PI3K/AKT) and 8 to inflammation signaling (TGF-ß, IL-8, IL-7, IL-3, IL-6, IL-2, IL-17, IL-10). CONCLUSIONS: Acute resistance exercise alters EV miRNAs targeting pathways involved in growth, metabolism, and immune function. Circulating EVs may serve as significant adaptive signaling molecules influenced by exercise training.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Entrenamiento de Fuerza , Humanos , Masculino , Vesículas Extracelulares/metabolismo , Adulto , Estudios Prospectivos , Femenino , MicroARNs/sangre , MicroARNs/metabolismo , Adulto Joven , Transducción de Señal , MicroARN Circulante/sangre
2.
Exp Physiol ; 108(2): 240-252, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36454193

RESUMEN

NEW FINDINGS: What is the central question of this study? Skeletal muscle extracellular vesicles likely act as pro-angiogenic signalling factors: does overexpression of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) alter skeletal muscle myotube extracellular vesicle release, contents and angiogenic potential? What is the main finding and its importance? Overexpression of PGC-1α results in secretion of extracellular vesicles that elevate measures of angiogenesis and protect against acute oxidative stress in vitro. Skeletal muscle with high levels of PGC-1α expression, commonly associated with exercise induced angiogenesis and high basal capillarization, may secrete extracellular vesicles that support capillary growth and maintenance. ABSTRACT: Skeletal muscle capillarization is proportional to muscle fibre mitochondrial content and oxidative capacity. Skeletal muscle cells secrete many factors that regulate neighbouring capillary endothelial cells (ECs), including extracellular vesicles (SkM-EVs). Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) regulates mitochondrial biogenesis and the oxidative phenotype in skeletal muscle. Skeletal muscle PGC-1α also regulates secretion of multiple angiogenic factors, but it is unknown whether PGC-1α regulates SkM-EV release, contents and angiogenic signalling potential. PGC-1α was overexpressed via adenovirus in primary human myotubes. EVs were collected from PGC-1α-overexpressing myotubes (PGC-EVs) as well as from green fluorescent protein-overexpressing myotubes (GFP-EVs), and from untreated myotubes. EV release and select mRNA contents were measured from EVs. Additionally, ECs were treated with EVs to measure angiogenic potential of EVs in normal conditions and following an oxidative stress challenge. PGC-1α overexpression did not impact EV release but did elevate EV content of mRNAs for several antioxidant proteins (nuclear factor erythroid 2-related factor 2, superoxide dismutase 2, glutathione peroxidase). PGC-EV treatment of cultured human umbilical vein endothelial cells (HUVECs) increased their proliferation (+36.6%), tube formation (length: +28.1%; number: +25.7%) and cellular viability (+52.9%), and reduced reactive oxygen species levels (-41%) compared to GFP-EVs. Additionally, PGC-EV treatment protected against tube formation impairments and induction of cellular senescence following acute oxidative stress. Overexpression of PGC-1α in human myotubes increases the angiogenic potential of SkM-EVs. These angiogenic benefits coincided with increased anti-oxidative capacity of recipient HUVECs. High PGC-1α expression in skeletal muscle may prompt the release of SkM-EVs that support vascular redox homeostasis and angiogenesis.


Asunto(s)
Vesículas Extracelulares , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Músculo Esquelético/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Vesículas Extracelulares/metabolismo
3.
Exp Physiol ; 107(5): 462-475, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35293040

RESUMEN

NEW FINDINGS: What is the central question of this study? Is 1 week of exercise training sufficient to reduce local and systemic inflammation? Do obesity and short-term concurrent aerobic and resistance exercise training alter skeletal muscle extracellular vesicle (EV) contents? What is the main finding and its importance? Obesity alters skeletal muscle small EV microRNAs targeting inflammatory and growth pathways. Exercise training alters skeletal muscle small EV microRNAs targeting inflammatory pathways, indicative of reduced inflammation. Our findings provide support for the hypotheses that EVs play a vital role in intercellular communication during health and disease and that EVs mediate many of the beneficial effects of exercise. ABSTRACT: Obesity is associated with chronic inflammation characterized by increased levels of inflammatory cytokines, whereas exercise training reduces inflammation. Small extracellular vesicles (EVs; 30-150 nm) participate in cell-to-cell communication in part through microRNA (miRNA) post-transcriptional regulation of mRNA. We examined whether obesity and concurrent aerobic and resistance exercise training alter skeletal muscle EV miRNA content and inflammatory signalling. Vastus lateralis biopsies were obtained from sedentary individuals with (OB) and without obesity (LN). Before and after 7 days of concurrent aerobic and resistance training, muscle-derived small EV miRNAs and whole-muscle mRNAs were measured. Pathway analysis revealed that obesity alters small EV miRNAs that target inflammatory (SERPINF1, death receptor and Gαi ) and growth pathways (Wnt/ß-catenin, PTEN, PI3K/AKT and IGF-1). In addition, exercise training alters small EV miRNAs in an anti-inflammatory manner, targeting the IL-10, IL-8, Toll-like receptor and nuclear factor-κB signalling pathways. In whole muscle, IL-8 mRNA was reduced by 50% and Jun mRNA by 25% after exercise training, consistent with the anti-inflammatory effects of exercise on skeletal muscle. Obesity and 7 days of concurrent exercise training differentially alter skeletal muscle-derived small EV miRNA contents targeting inflammatory and anabolic pathways.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Ejercicio Físico/fisiología , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-8/metabolismo , MicroARNs/genética , Músculo Esquelético/fisiología , Obesidad/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA