Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 106(1-1): 014404, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35974613

RESUMEN

Free-energy landscapes for short peptides-specifically for variants of the pH low insertion peptide (pHLIP)-in the heterogeneous environment of a lipid bilayer or cell membrane are constructed, taking into account a set of dominant interactions and the conformational preferences of the peptide backbone. Our methodology interprets broken internal H-bonds along the backbone of a polypeptide as statistically interacting quasiparticles, activated from the helix reference state. The favored conformation depends on the local environment (ranging from polar to nonpolar), specifically on the availability of external H-bonds (with H_{2}O molecules or lipid headgroups) to replace internal H-bonds. The dominant side-chain contribution is accounted for by residue-specific transfer free energies between polar and nonpolar environments. The free-energy landscape is sensitive to the level of pH in the aqueous environment surrounding the membrane. For high pH, we identify pathways of descending free energy that suggest a coexistence of membrane-adsorbed peptides with peptides in solution. A drop in pH raises the degree of protonation of negatively charged residues and thus increases the hydrophobicity of peptide segments near the C terminus. For low pH, we identify insertion pathways between the membrane-adsorbed state and a stable trans-membrane state with the C terminus having crossed the membrane.

2.
Phys Rev E ; 105(6-1): 064502, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35854540

RESUMEN

A methodology for the statistical mechanical analysis of polymeric chains under tension introduced previously is extended to include torque. The response of individual bonds between monomers or of entire groups of monomers to a combination of tension and torque involves, in the framework of this method of analysis, the (thermal or mechanical) activation of a specific mix of statistically interacting particles carrying quanta of extension or contraction and quanta of twist or supercoiling. The methodology, which is elucidated in applications of increasing complexity, is capable of describing the conversion between twist chirality and plectonemic chirality in quasistatic processes. The control variables are force or extension and torque or linkage (a combination of twist and writhe). The versatility of this approach is demonstrated in two applications relevant and promising for double-stranded DNA under controlled tension and torque. One application describes conformational transformations between (native) B-DNA, (underwound) S-DNA, and (overwound) P-DNA in accord with experimental data. The other application describes how the conversion between a twisted chain and a supercoiled chain accommodates variations of linkage and excess length in a buckling transition.

3.
Swiss Med Wkly ; 152: w30102, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-35019255

RESUMEN

Zoonotic species of the Chlamydiaceae family should be considered as rare pathogenic agents of severe atypical pneumonia. A fatal case of a severe pneumonia due to Chlamydia psittaci was traced back to pet birds, and pneumonia in a pregnant woman was attributed to abortions in a sheep and goat flock, being the source of Chlamydia abortus. The two SARS­CoV­2-negative pneumonia cases presented here were investigated in an inter-disciplinary approach involving physicians and veterinarians. State-of-art molecular methods allowed the identification and genotyping of zoonotic Chlamydiae.


Asunto(s)
COVID-19 , Infecciones por Chlamydia , Chlamydophila psittaci , Animales , Aves , Infecciones por Chlamydia/complicaciones , Infecciones por Chlamydia/diagnóstico , Chlamydophila psittaci/genética , Femenino , Humanos , Embarazo , SARS-CoV-2 , Ovinos
4.
Front Med (Lausanne) ; 8: 681321, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568356

RESUMEN

Introduction: Closed-loop ventilation modes are increasingly being used in intensive care units to ensure more automaticity. Little is known about the visual behavior of health professionals using these ventilation modes. The aim of this study was to analyze gaze patterns of intensive care nurses while ventilating a patient in the closed-loop mode with Intellivent adaptive support ventilation® (I-ASV) and to compare inexperienced with experienced nurses. Materials and Methods: Intensive care nurses underwent eye-tracking during daily care of a patient ventilated in the closed-loop ventilation mode. Five specific areas of interest were predefined (ventilator settings, ventilation curves, numeric values, oxygenation Intellivent, ventilation Intellivent). The main independent variable and primary outcome was dwell time. Secondary outcomes were revisits, average fixation time, first fixation and fixation count on areas of interest in a targeted tracking-time of 60 min. Gaze patterns were compared between I-ASV inexperienced (n = 12) and experienced (n = 16) nurses. Results: In total, 28 participants were included. Overall, dwell time was longer for ventilator settings and numeric values compared to the other areas of interest. Similar results could be obtained for the secondary outcomes. Visual fixation of oxygenation Intellivent and ventilation Intellivent was low. However, dwell time, average fixation time and first fixation on oxygenation Intellivent were longer in experienced compared to inexperienced intensive care nurses. Discussion: Gaze patterns of intensive care nurses were mainly focused on numeric values and settings. Areas of interest related to traditional mechanical ventilation retain high significance for intensive care nurses, despite use of closed-loop mode. More visual attention to oxygenation Intellivent and ventilation Intellivent in experienced nurses implies more routine and familiarity with closed-loop modes in this group. The findings imply the need for constant training and education with new tools in critical care, especially for inexperienced professionals.

5.
Phys Rev E ; 101(2-1): 022504, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32168618

RESUMEN

This work introduces a methodology for the statistical mechanical analysis of polymeric chains under tension controlled by optical or magnetic tweezers at thermal equilibrium with an embedding fluid medium. The response of single bonds between monomers or of entire groups of monomers to tension is governed by the activation of statistically interacting particles representing quanta of extension or contraction. This method of analysis is capable of describing thermal unbending of the freely jointed or wormlike chain kind, linear or nonlinear contour elasticity, and structural transformations including effects of cooperativity. The versatility of this approach is demonstrated in an application to double-stranded DNA undergoing torsionally unconstrained stretching across three regimes of mechanical response including an overstretching transition. The three-regime force-extension characteristic, derived from a single free-energy expression, accurately matches empirical evidence.

6.
Phys Rev E ; 97(4-1): 042131, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29758704

RESUMEN

We consider a lattice gas in spaces of dimensionality D=1,2,3. The particles are subject to a hardcore exclusion interaction and an attractive pair interaction that satisfies Gauss' law as do Newtonian gravity in D=3, a logarithmic potential in D=2, and a distance-independent force in D=1. Under mild additional assumptions regarding symmetry and fluctuations we investigate equilibrium states of self-gravitating material clusters, in particular radial density profiles for closed and open systems. We present exact analytic results in several instances and high-precision numerical data in others. The density profile of a cluster with finite mass is found to exhibit exponential decay in D=1 and power-law decay in D=2 with temperature-dependent exponents in both cases. In D=2 the gas evaporates in a continuous transition at a nonzero critical temperature. We describe clusters of infinite mass in D=3 with a density profile consisting of three layers (core, shell, halo) and an algebraic large-distance asymptotic decay. In D=3 a cluster of finite mass can be stabilized at T>0 via confinement to a sphere of finite radius. In some parameter regime, the gas thus enclosed undergoes a discontinuous transition between distinct density profiles. For the free energy needed to identify the equilibrium state we introduce a construction of gravitational self-energy that works in all D for the lattice gas. The decay rate of the density profile of an open cluster is shown to transform via a stretched exponential for 1

7.
PLoS One ; 11(7): e0159417, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27437704

RESUMEN

BACKGROUND: Severe blunt chest trauma is associated with high mortality. Sepsis represents a serious risk factor for mortality in acute respiratory distress syndrome (ARDS). In septic patients with ARDS complement activation products were found to be elevated in the plasma. In single models like LPS or trauma complement has been studied to some degree, however in clinically highly relevant double hit models such as the one used here little data is available. Here, we hypothesized that absence of C5 is correlated with a decreased inflammatory response in trauma induced septic acute lung injury. METHODS: 12 hrs after DH in mice the local and systemic cytokines and chemokines were quantified by multiplex bead array or ELISA, activated caspase-3 by western blot. Data were analyzed using one-way ANOVA followed by post-hoc Sidak's multiple comparison test (significance, p≤ 0.05). RESULTS: In lung tissue interleukin (IL)-6, monocyte chemo attractant protein-1 (MCP-1) and granulocyte-colony stimulating factor (G-CSF) was elevated in both C5-/- mice and wildtype littermates (wt), whereas caspase-3 was reduced in lungs after DH in C5-/- mice. Systemically, reduced keratinocyte-derived chemokine (KC) levels were observed after DH in C5-/- compared to wt mice. Locally, lung myeloperoxidase (MPO), protein, IL-6, MCP-1 and G-CSF in brochoalveolar lavage fluid (BALF) were elevated after DH in C5-/- compared to wt. CONCLUSIONS: In the complex but clinically relevant DH model the local and systemic inflammatory immune response features both, C5-dependent and C5-independent characteristics. Activation of caspase-3 in lung tissue after DH was C5-dependent whereas local inflammation in lung tissue was C5-independent.


Asunto(s)
Lesión Pulmonar Aguda/genética , Complemento C5/genética , Inflamación/genética , Síndrome de Dificultad Respiratoria/genética , Sepsis/genética , Lesión Pulmonar Aguda/patología , Animales , Caspasa 3/biosíntesis , Quimiocina CCL2/biosíntesis , Complemento C5/metabolismo , Factor Estimulante de Colonias de Granulocitos/biosíntesis , Humanos , Inflamación/complicaciones , Inflamación/patología , Interleucina-6/biosíntesis , Ratones , Síndrome de Dificultad Respiratoria/patología , Factores de Riesgo , Sepsis/sangre , Sepsis/complicaciones , Sepsis/patología , Traumatismos Torácicos/genética , Traumatismos Torácicos/patología , Heridas no Penetrantes/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-26565173

RESUMEN

We consider linear arrays of cells of volume V(c) populated by monodisperse rods of size σV(c),σ=1,2,..., subject to hardcore exclusion interaction. Each rod experiences a position-dependent external potential. In one application we also examine effects of contact forces between rods. We employ two distinct methods of exact analysis with complementary strengths and different limits of spatial resolution to calculate profiles of pressure and density on mesoscopic and microscopic length scales at thermal equilibrium. One method uses density functionals and the other statistically interacting vacancy particles. The applications worked out include gravity, power-law traps, and hard walls. We identify oscillations in the profiles on a microscopic length scale and show how they are systematically averaged out on a well-defined mesoscopic length scale to establish full consistency between the two approaches. The continuum limit, realized as V(c)→0,σ→∞ at nonzero and finite σV(c), connects our highest-resolution results with known exact results for monodisperse rods in a continuum. We also compare the pressure profiles obtained from density functionals with the average microscopic pressure profiles derived from the pair distribution function.

9.
J Stat Mech ; 20152015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31456824

RESUMEN

We present the exact solution of a microscopic statistical mechanical model for the transformation of a long polypeptide between an unstructured coil conformation and an α-helix conformation. The polypeptide is assumed to be adsorbed to the interface between a polar and a non-polar environment such as realized by water and the lipid bilayer of a membrane. The interfacial coil-helix transformation is the first stage in the folding process of helical membrane proteins. Depending on the values of model parameters, the conformation changes as a crossover, a discontinuous transition, or a continuous transition with helicity in the role of order parameter. Our model is constructed as a system of statistically interacting quasiparticles that are activated from the helix pseudo-vacuum. The particles represent links between adjacent residues in coil conformation that form a self-avoiding random walk in two dimensions. Explicit results are presented for helicity, entropy, heat capacity, and the average numbers and sizes of sboth coil and helix segments.

10.
Artículo en Inglés | MEDLINE | ID: mdl-24580202

RESUMEN

The equilibrium statistical mechanics of one-dimensional lattice gases with interactions of arbitrary range and shape between first-neighbor atoms is solved exactly on the basis of statistically interacting vacancy particles. Two sets of vacancy particles are considered. In one set all vacancies are of one-cell size. In the other set the sizes of vacancy particles match the separation between atoms. Explicit expressions are obtained for the Gibbs free energy and the distribution of spaces between atoms at thermal equilibrium. Applications to various types of interaction potentials are discussed, including long-range potentials that give rise to phase transitions. Extensions to hard rod systems are straightforward and are shown to agree with existing results for lattice models and their continuum limits.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 1): 011144, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22400549

RESUMEN

The s=3/2 Ising spin chain with uniform nearest-neighbor coupling, quadratic single-site potential, and magnetic field is shown to be equivalent to a system of 17 species of particles with internal structure. The same set of particles (with different energies) is shown to generate the spectrum of the s=1/2 Ising chain with dimerized nearest-neighbor coupling. The particles are free of interaction energies even at high densities. The mutual exclusion statistics of particles from all species is determined by their internal structure and encoded in a generalized Pauli principle. The exact statistical mechanical analysis can be performed for thermodynamically open or closed systems and with arbitrary energies assigned to all particle species. Special circumstances make it possible to merge two or more species into a single species. All traits that distinguish the original species become ignorable. The particles from the merged species are effectively indistinguishable and obey modified exclusion statistics. Different mergers may yield the same end product, implying that the inverse process (splitting any species into subspecies) is not unique. In a macroscopic system of two merged species at thermal equilibrium, the concentrations of the original species satisfy a functional relation governed by their mutual statistical interaction. That relation is derivable from an extremum principle. In the Ising context the system is open and the particle energies depend on the Hamiltonian parameters. Simple models of polymerization and solitonic paramagnetism each represent a closed system of two species that can transform into each other. Here they represent distinguishable traits with different energies of the same physical particle.


Asunto(s)
Coloides/química , Modelos Químicos , Modelos Moleculares , Polímeros/química , Simulación por Computador , Tamaño de la Partícula
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(2 Pt 1): 021136, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21928978

RESUMEN

The statistical mechanics of particles with shapes on a one-dimensional lattice is investigated in the context of the s=1 Ising chain with uniform nearest-neighbor coupling, quadratic single-site potential, and a magnetic field, which supports four distinct ground states: |↑↓↑↓⋯>, |∘∘⋯>, |↑↑⋯>, |↑∘↑∘⋯>. The complete spectrum is generated from each ground state by particles from a different set of six or seven species. Particles and elements of the pseudovacuum are characterized by motifs (patterns of several consecutive site variables). Particles are floating objects that can be placed into open slots on the lattice. Open slots are recognized as permissible links between motifs. The energy of a particle varies between species but is independent of where it is placed. Placement of one particle changes the open-slot configuration for particles of all species. This statistical interaction is encoded in a generalized Pauli principle, from which the multiplicity of states for a given particle combination is determined and used for the exact statistical mechanical analysis. Particles from all species belong to one of four categories: compacts, hosts, tags, or hybrids. Compacts and hosts find open slots in segments of pseudovacuum. Tags find open slots inside hosts. Hybrids are tags with hosting capability. In the taxonomy of particles proposed here, "species" is indicative of structure and "category" indicative of function. The hosting function splits the Pauli principle into exclusion and accommodation parts. Near phase boundaries, the state of the Ising chain at low temperature is akin to that of miscible or immiscible liquids with particles from one species acting as surfactant molecules.

13.
Phys Rev Lett ; 107(1): 017202, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21797567

RESUMEN

We analyze the problem of microwave absorption by the Heisenberg-Ising magnet in terms of shifted moments of the imaginary part of the dynamical susceptibility. When both the Zeeman field and the wave vector of the incident microwave are parallel to the anisotropy axis, the first four moments determine the shift of the resonance frequency and the linewidth in a situation where the frequency is varied for fixed Zeeman field. For the one-dimensional model we can calculate the moments exactly. This provides exact data for the resonance shift and the linewidth at arbitrary temperatures and magnetic fields. In current ESR experiments the Zeeman field is varied for fixed frequency. We show how in this situation the moments give perturbative results for the resonance shift and for the integrated intensity at small anisotropy as well as an explicit formula connecting the linewidth with the anisotropy parameter in the high-temperature limit.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 1): 061120, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17677233

RESUMEN

We present exact and explicit results for the thermodynamic properties (isochores, isotherms, isobars, response functions, velocity of sound) of a quantum gas in dimensions D > or = 1 and with fractional exclusion statistics 0 < or = g < or =1 connecting bosons (g=0) and fermions (g=1) . In D=1 the results are equivalent to those of the Calogero-Sutherland model. Emphasis is given to the crossover between bosonlike and fermionlike features, caused by aspects of the statistical interaction that mimic long-range attraction and short-range repulsion. A phase transition along the isobar occurs at a nonzero temperature in all dimensions. The T dependence of the velocity of sound is in simple relation to isochores and isobars. The effects of soft container walls are accounted for rigorously for the case of a pure power-law potential.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(6 Pt 1): 061112, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18233819

RESUMEN

We present the exact thermodynamics (isochores, isotherms, isobars, response functions) of a statistically interacting quantum gas in D dimensions. The results in D=1 are those of the thermodynamic Bethe ansatz for the nonlinear Schrödinger model, a gas with repulsive two-body contact potential. In all dimensions the ideal boson and fermion gases are recovered in the weak-coupling and strong-coupling limits, respectively. For all nonzero couplings ideal fermion gas behavior emerges for D>>1 and, in the limit D-->infinity , a phase transition occurs at T>0 . Significant deviations from ideal quantum gas behavior are found for intermediate coupling and finite D .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA