Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 224: 263-276, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30055459

RESUMEN

The modification of the fly ash (FA) by magnetite (M) was performed to obtain FAM adsorbent with improved adsorption efficiency for arsenate removal from water. The novel low cost adsorbents are characterized by liquid nitrogen porosimetry (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), Mössbauer spectroscopy (MB) and Fourier transform infrared (FTIR) spectroscopy. The optimal conditions and key factors influencing the adsorbent synthesis are assessed using the response surface method (RSM). The adsorption experiment was carried out in a batch system by varying the contact time, temperature, pH, and mass of the adsorbent. The adsorption capacity of the FAM adsorbent for As(V), calculated by Langmuir model, was 19.14 mg g-1. The thermodynamic parameters showed spontaneity of adsorption with low endothermic character. The kinetic data followed the pseudo-second-order kinetic model (PSO), and Weber-Morris model indicated intra-particle diffusion as rate limiting step. Alternative to low desorption capability of the FAM was found by five consecutive adsorption/magnetite precipitation processes which gave exhausted layered adsorbent with 65.78 mg g-1 capacity. This research also has shed light on the mechanism of As(V)-ion adsorption, presenting a promising solution for the valorization of a widely abundant industrial waste.


Asunto(s)
Arseniatos/aislamiento & purificación , Ceniza del Carbón , Óxido Ferrosoférrico/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Arseniatos/química , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Contaminantes Químicos del Agua/química
2.
Waste Manag ; 78: 366-378, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32559923

RESUMEN

This study focuses on the use of raw fly ash (FA) and modified fly ash - activated by lime (MFA), as effective and low-cost adsorbents for the removal of heavy metals (Zn2+, Pb2+ and As(V)), followed by the revalorization of the exhausted adsorbent. The granulometric, elemental analysis, point of zero charge (pHPZC), radiochemical and structural characterization were conducted using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and gamma spectrometry techniques. The optimal conditions and key factors influencing the adsorption process were assessed using the response surface method (RSM). The adsorption capacity of the MFA adsorbent for Zn2+, Pb2+ and As(V) removal, calculated by the Langmuir model, was found to be 33.13, 26.06, and 29.71 mg g-1, respectively. The kinetic and thermodynamic parameters indicated that the adsorption process is spontaneous and endothermic. Due to their low desorption potential of the exhausted adsorbents, their effective reuse was established to be feasible. For this reason, the valorization of this material as an additive in construction materials was thereafter studied, where testing its toxicity leaching (TCLP) as well as the mechanical properties of construction material containing exhausted MFA confirmed its safe use. Hence, this study points to a possible "two-in-one" reuse of coal ash, initially as an adsorbent and later as an additive in a construction material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA