Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 40(46): 12560-9, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21986896

RESUMEN

Two similar synthetic pathways using the ligand N,N-diisobutylisonicotinamide (L) with anhydrous CoX(2) salts (being X = Cl(-), Br(-)) led to different species: a one-dimensional system, [CoLCl(2)](n), 1, and an ionic product [Co(L)(2)(H(2)O)(4)][CoLBr(3)](2)·2H(2)O, 2, respectively. Compound 1 is a polymer in which ligand L coordinates to tetrahedral Co(II) ions in a bidentate bridging fashion using the pyridine nitrogen and carbonyl oxygen atoms. Compound 2 consists of one octahedral cationic [Co(L)(2)(H(2)O)(4)](2+) entity and two tetrahedral anionic [CoLBr(3)](-) units. In this system, the ligand molecules coordinate only through the pyridine nitrogen atoms. The magnetic properties of 1 and 2 were investigated in the temperature range of 2.0 to 300.0 K and correlations between both (due to the existence of similar features) examined. The study of the magnetic properties of 1 was carried out by considering each Co(II) ion as a perfectly isolated system, hence, J = 0, but taking into account a significant zero-field splitting contribution due to distortions on the tetrahedral environment of the cobalt atoms. The fit of the magnetic susceptibility data together with reduced magnetization vs H/T measurements provided similar parameters (|D| = 10.8 cm(-1), g(⊥) = 1.92, g(‖) = 2.92 for the former and |D| = 11.04 cm(-1)and g = 2.05 for the latter, respectively). On the other hand, the magnetic response of compound 2 has been analyzed using a model which considers the presence of two tetrahedral and one octahedral Co(ii) ions (Co(Td) and Co(Oh)). The study was carried out in two separated blocks, above and below 80 K, where only the most significant effects at each interval of temperature were considered. As a result, the analysis of the magnetic data shows weak antiferromagnetic interactions between the Co(Oh)and the two Co(Td) ions (J = -0.41 cm(-1)) in 2. The best fit parameters were g(Co(Td)) = 2.89, g(Co(Oh)) = 3.50, |D(Co(Td))| = 10.62 cm(-1), |E(Co(Td))| = 2.95 cm(-1), Δ = 240.9 cm(-1) and J(L-S) = -107.1 cm(-1), from where λ was calculated with a final value of -144.8 cm(-1) (J(L-S) = Aκλ). The approximations performed to obtain these values provide reasonable results in agreement with compound 1 and also to other systems in the literature.

2.
Dalton Trans ; 39(34): 7951-9, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20657942

RESUMEN

Reaction of anhydrous CoCl(2) with N,N'-diisopropylisonicotinamide (L) has yielded a coordination polymer containing linear trinuclear [Co(3)L(4)Cl(6)] units with a rare, mixed Co(T(d))-Co(O(h))-Co(T(d)) assembly (compound 1). The central Co(II) ion, of each trinuclear entity, exhibits a distorted octahedral geometry, with two ligand molecules coordinating through their carbonyl oxygen atoms along with two bridging Cl(-) ions and two pyridine N atoms from the neighboring molecules. Also, in each unit, two outer Co(II) ions display distorted tetrahedral geometry, coordinating to one ligand molecule through the pyridine N atom and to three Cl(-) ions (one of them bridged to the central Co(II) and the two acting as a terminal ligands). The magnetic properties of this compound were investigated in the temperature range of 2.0 to 300.0 K. Owing to the complexity of the system and the weak interactions among trinuclear aggregates, the magnetic response has been analyzed using a model which considers these units as isolated systems. In addition, magnetic data has been examined in two separated blocks, above and below 50 K, applying programs VPMAG FORTRAN and MAGPACK-fit, respectively. This way, only the most significant effects at each interval of temperature were considered: spin-orbit coupling of the Co(O(h)), at high temperatures and zero-field splitting parameters of the Co(T(d)) at the low. Spin-spin magnetic interaction has been taken into account for the whole range of temperatures. As a result, the analysis of the magnetic data shows that, within every trinuclear unit, the central position matches well with a high-spin Co(II) (S = 3/2) and also reveals weak ferromagnetic interactions between the Co(O(h)) and the two terminal Co(T(d)) ions (J = +0.34 cm(-1)).

3.
Inorg Chem ; 45(5): 2203-8, 2006 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-16499384

RESUMEN

The reaction between Ta(OEt)5 and 1,1,3,3-tetramethyl-1,3-disiloxanediol, (HOSiMe2OSiMe2OH), leads to new siloxy complexes in which the dimeric nature of Ta(OEt)5 is maintained with both bridging ethoxide and disiloxanediolato bridges. With equal amounts of the reagents, two terminal OEt groups are replaced to form [Ta(OEt)2]2(mu-OEt)2(mu-OSiMe2OSiMe2O)2, 1, whereas with an excess of diol, the remaining terminal OEt groups are also replaced but with a trisiloxanediolato unit to form [Ta(OSiMe2OSiMe2OSiMe2O)]2(mu-OEt)2(mu-OSiMe2OSiMe2O)2, 2. Complexes 1 and 2 catalyze the transformation of HOSiMe2OSiMe2OH to polysiloxanes. Thermal treatment of 1 results in the formation of a 1:2 mixture of Ta2O5/SiO2; no new phases are observed. The molecular structures of 1 and 2 are confirmed by X-ray crystallography.


Asunto(s)
Química Inorgánica/métodos , Compuestos Organometálicos/química , Tantalio/química , Catálisis , Cristalografía por Rayos X , Dimerización , Estructura Molecular , Compuestos Organometálicos/síntesis química
4.
Inorg Chem ; 44(18): 6415-24, 2005 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16124822

RESUMEN

Electrospray ionization (ESI) quadrupole ion trap mass spectrometry (QIT-MS) and collisionally activated dissociation (CAD) were used to evaluate the rare-earth binding properties of two hydrophobic carbamoylmethylphosphine oxide (CMPO) ligands, the normal bidentate variety, (t-BuC6H4)2P(O)CH2C(O)N(i-Bu)2 (A), a new potentially tridentate extractant, (t-BuC6H4)2P(O)CH[CH2C(O)N(i-Bu)2]C(O)N(i-Bu)2 (B), and tributyl phosphate. The mass spectral results obtained from analysis of 1% HNO3/methanol solution containing the ligands and dissolved lanthanide salts reveal that the favorable stoichiometries of the ligand/metal/nitrate complexes are 2:1:2 for the bidentate ligand A, 1:1:2 for the tridentate ligand B, and 3:1:2 for the monodentate tributyl phosphate. These observed stoichiometries correlate with the number of available binding sites on each ligand as well as with potential steric effects. Energy-variable collisionally activated dissociation experiments showed that for the 2:1:2 complexes involving ligand A or B, as the ionic radius of the bound metal decreased, the removal of nitric acid required less energy and resulted in less extensive spontaneous solvent coordination. This experimental trend suggests that, as the ionic radius of the lanthanide ion decreases, a pair of the carbamoylmethylphosphine ligands is able to more completely solvate the bound metal ion thereby weakening the nitrate-metal interaction.

5.
Inorg Chem ; 43(21): 6699-706, 2004 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-15476369

RESUMEN

The synthesis, structure, and magnetic properties of two new tetranuclear Cu(II) complexes containing N,N,N',N'-tetraethylpyridine-2,6-dithiocarboxamide (S-dept) of formula [Cu(2)Cl(2)(mu-S-dept)(2)][Cu(2)Cl(4)(mu-Cl)(2)] (1) and [Cu(2)(mu-Cl)(2)(S-dept)(2)][CuCl(3)(EtOH)](2) (2) are reported. Their X-ray crystal structures reveal that the complexes are composed of anionic and cationic dimers, that in both cases contain the metal centers which interact via Coulombic and/or hydrogen bonding interactions. In both cases, the Cu centers in the anionic moieties adopt a slightly distorted tetrahedral geometry whereas for the cationic moieties they adopt a square-pyramidal type of geometry. Magnetic susceptibility data show that compounds 1 and 2 present an overall antiferromagnetic behavior arising from the contribution of both anionic and cationic moieties. For 1, the best fit obtained gave J(1) = -2.62 +/- 0.19 cm(-1), J(2) = -19.54 +/- 0.47 cm(-1), and g(2) = 2.164 +/- 0.004 cm(-1) (R = 8.28 x 10(-5)) whereas for 2 it gave J(1) = 4.48 +/- 2.73 cm(-1), g(1) = 2.20 +/- 0.03, J(2) = -11.26 +/- 2.01 cm(-1), and g(2) = 2.10 +/- 0.03 (R = 1.15 x 10(-4)). The nature of the superexchange pathways in 1 and 2 is discussed on the basis of structural, magnetic, and molecular orbital considerations. Theoretical calculations are performed at the extended Huckel level in order to obtain their molecular orbitals and energies using their crystallographic data.

6.
Inorg Chem ; 41(23): 6153-60, 2002 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-12425646

RESUMEN

The complexes [Cu2(mu-Cl)2(Cl)2(L)2] (L = dialkylpyridine-2,6-dicarboxylate; R = Et, L = depc, 1; R = i-Pr, L = dppc, 2) have been prepared and their magnetic properties studied. The crystal structures of complexes 1 and 2 have been solved. Compound 1 belongs to the P space group with Z = 2, a = 8.3020(10) A, b = 9.2050(10) A, c = 10.065(2) A, alpha = 99.040(10), beta = 100.810(10), and gamma = 106.502(10) whereas 2 belongs to the C2/c space group with Z = 8, a = 11.6360(10) A, b = 25.906(3) A, c = 11.76579(10) A, and beta = 107.900(10). The different alkyl ester substitutes produce substantial structural and electronic differences. The Cu2Cl2 core geometry is planar for 1 whereas it adopts a butterfly shape in the case of 2. Furthermore, in 2 the dppc ligand coordinates only by the carbonyl oxygen atoms whereas in 1 the depc ligand coordinates through carbonyl and alkoxy oxygen atoms. Magnetic susceptibility data show a ferromagnetic coupling between the two Cu(II) centers in both cases (J = 39.9(6) cm(-1) for 1, and J = 51.3(5) cm(-1) for 2) with very weak antiferromagnetic interactions (J ' = -0.59 cm(-1) and -0.57 cm(-1) for 1 and 2, respectively). Theoretical calculations at the extended Hückel level have also been carried out to further understand the electronic nature of complexes 1 and 2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA