RESUMEN
The stroma surrounding tumors can either restrict or promote tumor growth and progression, and both the cellular and non-cellular components of the stroma play an active role. The cellular components in the surrounding stroma include tumor-associated fibroblasts, host tissue cells and immune cells. The non-cellular components, which form the extracellular matrix (ECM) scaffold, include proteoglycans, collagen, proteinases, growth factors and cytokines. For tumorigenesis to occur it is necessary for tumor cells to modify the surrounding stroma. Tumor cells have mechanisms for achieving this, such as co-opting fibroblasts and modifying the ECM they produce, degrading the surrounding ECM and/or synthesizing a favorable ECM to support invasion. Proteoglycans are an important component of the ECM and play an active role in tumor growth and progression. The expression and glycosylation patterns of proteoglycans are altered in the stroma surrounding tumors and these molecules may support or restrict tumor growth and progression depending on the type and stage of tumor. In the present review we discuss the difference between the tumor promoting and restricting stromal reactions surrounding tumors and the role proteoglycans play.
Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Proteoglicanos/metabolismo , Células del Estroma/metabolismo , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Fibroblastos/metabolismo , Humanos , Neoplasias/patología , Transducción de Señal , Células del Estroma/patologíaRESUMEN
The stromal reaction surrounding tumors leads to the formation of a tumor-specific microenvironment, which may play either a restrictive role or a supportive role in the growth and progression of the tumors. Lumican, a small leucine-rich proteoglycan (SLRP) of the extracellular matrix (ECM), regulates collagen fibrillogenesis. Recently, lumican has also been shown to regulate cell behavior during embryonic development, tissue repair and tumor progression. The role of lumican in cancer varies according to the type of tumor. In this study we analyze the role of lumican in the pathogenesis of prostate cancer both in vivo and in vitro. Overall lumican up-regulation was observed in the primary tumors analyzed through both real-time PCR and immunostaining. The increase in lumican expression was observed in the reactive stroma surrounding prostate primary tumors with fibrotic deposition surrounding the acinar glands. In vitro analysis demonstrated that lumican inhibited both the migration and invasion of metastatic prostate cancer cells isolated from lymph node, bone and brain. Moreover, prostate cancer cells seeded on lumican presented a decrease in the formation of cellular projections, lamellipodia detected by a decreased rearrangement in ZO-1, keratin 8/18, integrin ß1 and MT1-MMP, and invadopodia detected by disruption of α-smooth muscle actin, cortactin and N-WASP. Moreover, a significant increase in prostate cancer cell invasion was observed through the peritoneum of lumican knockout mice, further demonstrating the restrictive role lumican present in the ECM has on prostate cancer invasion. In conclusion, lumican present in the reactive stroma surrounding prostate primary tumors plays a restrictive role on cancer progression, and we therefore postulate that lumican could be a valuable marker in prostate cancer staging.