Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
World J Microbiol Biotechnol ; 40(3): 81, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285224

RESUMEN

An integrated approach to nutrient recycling utilizing microalgae could provide feasible solutions for both environmental control and energy production. In this study, an axenic microalgae strain, Chlorella sorokiniana ASK25 was evaluated for its potential as a biofuel feedstock and textile wastewater (TWW) treatment. The microalgae isolate was grown on TWW supplemented with different proportions of standard BG-11 medium varying from 0 to 100% (v/v). The results showed that TWW supplemented with 20% (v/v) BG11 medium demonstrated promising results in terms of Chlorella sorokiniana ASK25 biomass (3.80 g L-1), lipid production (1.24 g L-1), nutrients (N/P, > 99%) and pollutant removal (chemical oxygen demand (COD), 99.05%). The COD level dropped by 90% after 4 days of cultivation, from 2,593.33 mg L-1 to 215 mg L-1; however, after day 6, the nitrogen (-NO3-1) and total phosphorus (TP) levels were reduced by more than 95%. The biomass-, total lipid- and carbohydrate- production, after 6 days of cultivation were 3.80 g L-1, 1.24 g L-1, and 1.09 g L-1, respectively, which were 2.15-, 2.95- and 3.30-fold higher than Chlorella sorokiniana ASK25 grown in standard BG-11 medium (control). In addition, as per the theoretical mass balances, 1 tonne biomass of Chlorella sorokiniana ASK25 might yield 294.5 kg of biodiesel and 135.7 kg of bioethanol. Palmitic acid, stearic acid, and oleic acid were the dominant fatty acids found in the Chlorella sorokiniana ASK25 lipid. This study illustrates the potential use of TWW as a microalgae feedstock with reduced nutrient supplementation (20% of TWW). Thus, it can be considered a promising feedstock for economical biofuel production.


Asunto(s)
Chlorella , Microalgas , Biocombustibles , Ácidos Grasos , Textiles
3.
Heliyon ; 9(8): e18613, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37593641

RESUMEN

The most significant and renewable class of polymeric materials are extracellular exopolysaccharides (EPSs) produced by microorganisms. Because of their diverse chemical and structural makeup, EPSs play a variety of functions in a variety of industries, including the agricultural industry, dairy industry, biofilms, cosmetics, and others, demonstrating their biotechnological significance. EPSs are typically utilized in high-value applications, and current research has focused heavily on them because of their biocompatibility, biodegradability, and compatibility with both people and the environment. Due to their high production costs, only a few microbial EPSs have been commercially successful. The emergence of financial barriers and the growing significance of microbial EPSs in industrial and medical biotechnology has increased interest in exopolysaccharides. Since exopolysaccharides can be altered in a variety of ways, their use is expected to increase across a wide range of industries in the coming years. This review introduces some significant EPSs and their composites while concentrating on their biomedical uses.

4.
J Hum Reprod Sci ; 14(Suppl 1): S3-S30, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34975243

RESUMEN

STUDY QUESTION: What are the good practices for the use of ADD-ON Treatments in IVF cycles in INDIA? WHAT IS ALREADY KNOWN: Add on treatments in IVF are procedures and technologies which are offered to patients in hope of improving the success rates. A lot of add on treatments exist; most of them have limited evidence and data for the Indian patient population is miniscule. These interventions may have limited effects, so it is imperative that any new technology that is offered is evaluated properly and has enough evidence to suggest that it is safe and effective. STUDY DESIGN SIZE DURATION: This is the report of a 2-day consensus meeting where two moderators were assigned to a group of experts to collate information on Add on treatments in IVF in INDIA. This meeting utilised surveys, available scientific evidence and personal laboratory experience into various presentations by experts on pre-decided specific topics. PARTICIPANTS/MATERIALS SETTING METHODS: Expert professionals from ISAR representing clinical and embryology fields. MAIN RESULTS AND THE ROLE OF CHANCE: The report is divided in various components including the health of the Offspring, the various ADD ons available to an ART center, consensus points for each technology & qualifications and trainings for embryologists, the report and recommendations of the expert panel reflect the discussion on each of the topics and try to lay down good practice points for labs to follow. LIMITATIONS REASONS FOR CAUTION: The recommendations are solely based on expert opinion. Future availability of data may warrant an update of the same. WIDER IMPLICATIONS OF THE FINDINGS: These guidelines can help labs across the country to standardise their ART services and improve clinical outcomes, it will also motivate clinics to collect data and report the use of Add ons to the national registry. STUDY FUNDING/COMPETING INTERESTS: The consensus meeting and writing of the paper was supported by funds from CooperSurgical India.

5.
3 Biotech ; 10(9): 383, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32802725

RESUMEN

4-Coumarate: coenzyme A ligase (4CL) is a key enzyme involved in the early steps of the monolignol biosynthetic pathway. It is hypothesized to modulate S and G monolignol content in the plant. Lignin removal is imperative to the paper industry and higher S/G ratio governs better extractability of lignin and economics of the pulping process. This background prompted us to predict 3D structure of two isoforms of 4CL in Leucaena leucocephala and evaluate their substrate preferences. The 3D structure of Ll4CL1 and Ll4CL2 protein were created by homology modeling and further refined by loop refinement. Molecular docking studies suggested differential substrate preferences of both the isoforms. Ll4CL1 preferred sinapic acid (- 4.91 kcal/mole), ferulic acid (- 4.84 kcal/mole), hydroxyferulic acid (- 4.72 kcal/mole), and caffeic acid (- 4.71 kcal/mole), in their decreasing order. Similarly, Ll4CL2 preferred caffeic acid (- 6.56 kcal/mole, 4 H bonds), hydroxyferulic acid (- 6.56 kcal/mole, 3 H bonds), and ferulic acid (- 6.32 kcal/mole) and sinapic acid (- 5.00 kcal/mole) in their decreasing order. Further, active site residues were identified in both the isoforms and in silico mutation and docking analysis was performed. Our analysis suggested that ASP228, TYR262, and PRO326 for Ll4CL1 and SER165, LYS247 and PRO315 for Ll4CL2 were important for their functional activity. Based on differential substrate preferences of the two isoforms, as a first step towards genetically modified Leuaena having the desired phenotype, it can be proposed that over-expression of Ll4CL1 gene and/or down-regulation of Ll4CL2 gene could yield higher S/G ratio leading to better extractability of lignin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA