Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Assoc Lab Anim Sci ; 56(1): 63-68, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28905717

RESUMEN

The local anesthetic bupivacaine is valuable for perioperative analgesia, but its use in the postoperative period is limited by its short duration of action. Here, we evaluated the application of a slow-release liposomal formulation of bupivacaine for postoperative analgesia. The aim was to assess whether liposomal bupivacaine effectively attenuates postoperative mechanical and thermal hypersensitivity in a rat model of incisional pain. Rats (n = 36) were randomly assigned to 1 of 5 treatment groups: saline, 1 mL/kg SC every 12 h for 2 d; buprenorphine HCl, 0.05 mg/kg SC every 12 h for 2 d (Bup HCl); 0.5% bupivacaine, 2 mg/kg SC local infiltration once (Bupi); liposomal bupivacaine, 1 mg/kg SC local infiltration once (Exp1); and liposomal bupivacaine, 6 mg/kg SC local infiltration once (Exp6). Mechanical and thermal hypersensitivity were evaluated daily on days -1, 0, 1, 2, 3, and 4. The saline group exhibited both hypersensitivities through all 4 evaluated postoperative days. Bup HCl attenuated mechanical hypersensitivity for 2 d and thermal hypersensitivity for 1 d. Bupi attenuated only thermal hypersensitivity for 4 d. Rats in the Exp1 group showed attenuation of both mechanical and thermal hypersensitivity for 4 d, and those in the Exp6 group had attenuation of mechanical hypersensitivity on day 0 and thermal hypersensitivity for 4 d. These data suggest that a single local infiltration of liposomal bupivacaine at a dose of 1 mg/kg SC effectively attenuates postoperative mechanical and thermal hypersensitivity for 4 d in a rat model of incisional pain.


Asunto(s)
Anestésicos Locales/uso terapéutico , Bupivacaína/uso terapéutico , Liposomas , Dolor Postoperatorio/tratamiento farmacológico , Anestésicos Locales/administración & dosificación , Anestésicos Locales/química , Animales , Bupivacaína/administración & dosificación , Bupivacaína/química , Buprenorfina/administración & dosificación , Buprenorfina/uso terapéutico , Preparaciones de Acción Retardada , Relación Dosis-Respuesta a Droga , Masculino , Periodo Posoperatorio , Distribución Aleatoria , Ratas
2.
J Clin Immunol ; 31(6): 1010-20, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21847523

RESUMEN

Multiple sclerosis is an autoimmune disease of the central nervous system characterized by neuroinflammation and demyelination. Although considered a T cell-mediated disease, multiple sclerosis involves the activation of both adaptive and innate immune cells, as well as resident cells of the central nervous system, which synergize in inducing inflammation and thereby demyelination. Differentiation, survival, and inflammatory functions of innate immune cells and of astrocytes of the central nervous system are regulated by tyrosine kinases. Here, we show that imatinib, sorafenib, and GW2580-small molecule tyrosine kinase inhibitors-can each prevent the development of disease and treat established disease in a mouse model of multiple sclerosis. In vitro, imatinib and sorafenib inhibited astrocyte proliferation mediated by the tyrosine kinase platelet-derived growth factor receptor (PDGFR), whereas GW2580 and sorafenib inhibited macrophage tumor necrosis factor (TNF) production mediated by the tyrosine kinases c-Fms and PDGFR, respectively. In vivo, amelioration of disease by GW2580 was associated with a reduction in the proportion of macrophages and T cells in the CNS infiltrate, as well as a reduction in the levels of circulating TNF. Our findings suggest that GW2580 and the FDA-approved drugs imatinib and sorafenib have potential as novel therapeutics for the treatment of autoimmune demyelinating disease.


Asunto(s)
Astrocitos/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Animales , Anisoles/administración & dosificación , Anisoles/efectos adversos , Astrocitos/inmunología , Astrocitos/metabolismo , Astrocitos/patología , Benzamidas , Bencenosulfonatos/administración & dosificación , Bencenosulfonatos/efectos adversos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Humanos , Mesilato de Imatinib , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Niacinamida/análogos & derivados , Compuestos de Fenilurea , Piperazinas/administración & dosificación , Piperazinas/efectos adversos , Inhibidores de Proteínas Quinasas/efectos adversos , Piridinas/administración & dosificación , Piridinas/efectos adversos , Pirimidinas/administración & dosificación , Pirimidinas/efectos adversos , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Receptores del Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Sorafenib , Linfocitos T/patología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA