Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Motil Cytoskeleton ; 64(10): 767-76, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17705267

RESUMEN

From the four known vertebrate tropomyosin genes (designated TPM1, TPM2, TPM3, and TPM4) over 20 isoforms can be generated. The predominant TPM1 isoform, TPM1alpha, is specifically expressed in both skeletal and cardiac muscles. A newly discovered alternatively spliced isoform, TPM1kappa, containing exon 2a instead of exon 2b contained in TPM1alpha, was found to be cardiac specific and developmentally regulated. In this work, we transfected quail skeletal muscle cells with green fluorescent proteins (GFP) coupled to chicken TPM1alpha and chicken TPM1kappa and compared their localizations in premyofibrils and mature myofibrils. We used the technique of fluorescence recovery after photobleaching (FRAP) to compare the dynamics of TPM1alpha and TPM1kappa in myotubes. TPM1alpha and TPM1kappa incorporated into premyofibrils, nascent myofibrils, and mature myofibrils of quail myotubes in identical patterns. The two tropomyosin isoforms have a higher exchange rate in premyofibrils than in mature myofibrils. F-actin and muscle tropomyosin are present in the same fibers at all three stages of myofibrillogenesis (premyofibrils, nascent myofibrils, mature myofibrils). In contrast, the tropomyosin-binding molecule nebulin is not present in the initial premyofibrils. Nebulin is gradually added during myofibrillogenesis, becoming fully localized in striated patterns by the mature myofibril stage. A model of thin filament formation is proposed to explain the increased stability of tropomyosin in mature myofibrils. These experiments are supportive of a maturing thin filament and stepwise model of myofibrillogenesis (premyofibrils to nascent myofibrils to mature myofibrils), and are inconsistent with models that postulate the immediate appearance of fully formed thin filaments or myofibrils.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Miofibrillas/metabolismo , Tropomiosina/metabolismo , Actinas/aislamiento & purificación , Animales , Aves , Células Cultivadas , Embrión de Pollo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/citología , Proteínas Musculares/análisis , Músculo Esquelético/química , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Miocardio/citología , Miocardio/metabolismo , Miofibrillas/química , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transfección , Tropomiosina/análisis , Tropomiosina/genética
2.
J Muscle Res Cell Motil ; 26(6-8): 343-54, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16465476

RESUMEN

Building a myofibril from its component proteins requires the interactions of many different proteins in a process whose details are not understood. Several models have been proposed to provide a framework for understanding the increasing data on new myofibrillar proteins and their localizations during muscle development. In this article we discuss four current models that seek to explain how the assembly occurs in vertebrate cross-striated muscles. The models hypothesize: (a) stress fiber-like structures as templates for the assembly of myofibrils, (b) assembly in which the actin filaments and Z-bands form subunits independently from A-band subunits, with the two subsequently joined together to form a myofibril, (c) premyofibrils as precursors of myofibrils, or (d) assembly occurring without any intermediary structures. The premyofibril model, proposed by the authors, is discussed in more detail as it could explain myofibrillogenesis under a variety of different conditions: in ovo, in explants, and in tissue culture studies on cardiac and skeletal muscles.


Asunto(s)
Desarrollo de Músculos/fisiología , Músculo Esquelético/crecimiento & desarrollo , Miofibrillas/fisiología , Actinina/metabolismo , Actinas/metabolismo , Animales , Fusión Celular , Células Cultivadas , Conectina , Microscopía Fluorescente , Microtúbulos/metabolismo , Modelos Biológicos , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Miofibrillas/metabolismo , Paclitaxel/farmacología , Proteínas Quinasas/metabolismo , Codorniz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA