Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros











Intervalo de año de publicación
1.
Fitoterapia ; 179: 106205, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39255910

RESUMEN

As insufficient sleep has become a widespread concern in modern society, potential sleep-improving effect of mulberry (Morus alba L.) leaf ethanol extract (MLE) and the related mechanism were investigated in the present study. According to the results, MLE could significantly shorten sleep latency by 33 %, extend sleep duration by 56 % and increase sleep ratio of mice through increasing 5-HT and GABA release in serum, hypothalamus and hippocampus. Metabonomic analysis showed that phenylalanine metabolism, arginine and proline metabolism might be the potential pathways of MLE to improve sleep. Network pharmacological and LC-MS analysis suggested that the key sleep-improving active ingredients in MLE might be luteolin, kaempferol, naringenin, morin, stigmasterol and ß-sitosterol. Further molecular docking and qRT-PCR results demonstrated that the key targets for MLE to improve sleep might be MAOA, GABRA1 and GABRA2. In conclusion, MLE showed outstanding sleep-improving effect and great potential for the application as novel sleep-improving functional food.

2.
Clin Transl Med ; 14(4): e1644, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572667

RESUMEN

RNA methylation is widespread in nature. Abnormal expression of proteins associated with RNA methylation is strongly associated with a number of human diseases including cancer. Increasing evidence suggests that targeting RNA methylation holds promise for cancer treatment. This review specifically describes several common RNA modifications, such as the relatively well-studied N6-methyladenosine, as well as 5-methylcytosine and pseudouridine (Ψ). The regulatory factors involved in these modifications and their roles in RNA are also comprehensively discussed. We summarise the diverse regulatory functions of these modifications across different types of RNAs. Furthermore, we elucidate the structural characteristics of these modifications along with the development of specific inhibitors targeting them. Additionally, recent advancements in small molecule inhibitors targeting RNA modifications are presented to underscore their immense potential and clinical significance in enhancing therapeutic efficacy against cancer. KEY POINTS: In this paper, several important types of RNA modifications and their related regulatory factors are systematically summarised. Several regulatory factors related to RNA modification types were associated with cancer progression, and their relationships with cancer cell migration, invasion, drug resistance and immune environment were summarised. In this paper, the inhibitors targeting different regulators that have been proposed in recent studies are summarised in detail, which is of great significance for the development of RNA modification regulators and cancer treatment in the future.


Asunto(s)
Neoplasias , Metilación de ARN , Humanos , 5-Metilcitosina , Adenosina , Movimiento Celular , ARN/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
J Agric Food Chem ; 72(11): 5746-5756, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38450489

RESUMEN

Alcohol dehydrogenase (ADH) is a crucial rate-limiting enzyme in alcohol metabolism. Our previous research found that ethanol-induced intracellular extracts of Lactococcus lactis (L. lactis) could enhance alcohol metabolism in mice, but the responsible compounds remain unidentified. The study aimed to screen potential ADH-activating peptides from ethanol-induced L. lactis using virtual screening and molecular docking calculation. Among them, the pentapeptide FAPEG might bind to ADH through hydrophobic interaction and hydrogen bonds, then enhancing ADH activity. Spectroscopy analysis further investigated the peptide-enzyme interaction between FAPEG and ADH, including changes in the amino acid residue microenvironment and secondary structural alterations. Furthermore, FAPEG could protect against alcoholic liver injury (ALI) in mice by reducing blood alcohol concentration, enhancing the activity of antioxidant and alcohol metabolism enzymes, and attenuating alcohol-induced hepatotoxicity, which was related to the activation of the Nrf2/keap1/HO-1 signaling pathway. The study provided preliminary evidence that the generation of ADH-activating peptides in ethanol-induced L. lactis has the potential in preventing ALI in mice using in silico prediction and in vivo validation approaches.


Asunto(s)
Etanol , Lactococcus lactis , Ratones , Animales , Etanol/metabolismo , Lactococcus lactis/metabolismo , Nivel de Alcohol en Sangre , Alcohol Deshidrogenasa/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2/metabolismo , Hígado/metabolismo
4.
Biomolecules ; 14(2)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38397451

RESUMEN

The protein 4.1R is an essential component of the erythrocyte membrane skeleton, serving as a key structural element and contributing to the regulation of the membrane's physical properties, including mechanical stability and deformability, through its interaction with spectrin-actin. Recent research has uncovered additional roles of 4.1R beyond its function as a linker between the plasma membrane and the membrane skeleton. It has been found to play a crucial role in various biological processes, such as cell fate determination, cell cycle regulation, cell proliferation, and cell motility. Additionally, 4.1R has been implicated in cancer, with numerous studies demonstrating its potential as a diagnostic and prognostic biomarker for tumors. In this review, we provide an updated overview of the gene and protein structure of 4.1R, as well as its cellular functions in both physiological and pathological contexts.


Asunto(s)
Proteínas del Citoesqueleto , Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Proteínas del Citoesqueleto/metabolismo , Espectrina/química , Espectrina/genética , Espectrina/metabolismo , Actinas/metabolismo , Membrana Eritrocítica/metabolismo
5.
Int J Biol Macromol ; 263(Pt 2): 130161, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367791

RESUMEN

Snail mucus is rich in proteins and polysaccharides, which has been proved to promote wound healing in mice in our previous research. The aim of this study was to investigate the effective component in snail mucus that can exert the wound healing potential and its structural characterization. Here, the glycoprotein from the snail mucus (SM1S) was obtained by DEAE-Sepharose Fast Flow and Sephacryl S-300 columns. The structural characteristics of SM1S were investigated via chromatographic techniques, periodic acid oxidation, FT-IR spectroscopy and NMR spectroscopy. Results showed that SM1S was a glycoprotein with a molecular weight of 3.8 kDa (83.23 %), consists of mannose, glucuronic acid, glucose, galactose, xylose, arabinose, fucose at a ratio of 13.180:4.875:1043.173:7.552:1:3.501:2.058. In addition, the periodic acid oxidation and NMR analysis showed that SM1S contained 1,6-glycosidic bonds, and might also contain 1 â†’ 4 and 1 â†’ 2 glycosidic or 1 â†’ 3 glycosidic bonds. Furthermore, the migration experiment of human skin fibroblasts in vitro suggested that SM1S had a good effect to accelerate the scratch healing of cells. This study suggested that SM1S may be a prospective candidate as a natural wound dressing for the development of snail mucus products.


Asunto(s)
Glicoproteínas , Polisacáridos , Caracoles , Animales , Humanos , Ratones , Espectroscopía Infrarroja por Transformada de Fourier , Ácido Peryódico , Polisacáridos/farmacología , Polisacáridos/química , Cicatrización de Heridas
6.
Fitoterapia ; 173: 105816, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38168571

RESUMEN

Foeniculum vulgare Mill. is a medicinal and food homologous plant, and it has various biological activities. Yet, no research has explored its anti-motion sickness effects. Chemical properties of fennel extracts (FvE) and flavonoids (Fvf) were analyzed based on UPLC-QTRAP-MS to elucidate its potential anti-motion sickness components in the present study. The mice models of motion sickness were stimulated by biaxial rotational acceleration. Behavioral experiments such as motion sickness index and open field test and the measurement of neurotransmitters were used to evaluate the efficacy of compounds on motion sickness. Results showed that FvE contains terpenes, alkaloids, flavonoids, etc. Eight flavonoids including quercetin-3ß-D-glucoside, rutin, hyperoside, quercetin, miquelianin, trifolin, isorhamnetin and kaempferol were identified in the purified Fvf. FvE and Fvf significantly reduced the motion sickness index of mice by 53.2% and 48.9%, respectively. Fvf also significantly alleviated the anxious behavior of mice after rotational stimulation. Among the eight flavonoids, isorhamnetin had the highest oral bioavailability and moderate drug-likeness index and thus speculated to be the bioactive compound in fennel for its anti-motion sickness effect. It reduced the release of 5-HT and Ach to alleviate the motion sickness response and improve the work completing ability of mice and nervous system dysfunction after rotational stimulation. This study provided in-depth understanding of the anti-motion sickness bioactive chemical properties of fennel and its flavonoids, which will contribute to the new development and utilization of fennel.


Asunto(s)
Foeniculum , Mareo por Movimiento , Flavonoides/farmacología , Flavonoides/análisis , Quercetina , Foeniculum/química , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Estructura Molecular , Extractos Vegetales/química , Mareo por Movimiento/tratamiento farmacológico
7.
Int Immunopharmacol ; 128: 111546, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38237224

RESUMEN

Acute liver injury (ALI) is a common clinical disease caused by sepsis, metabolic syndrome, hepatitis virus. Macrophage plays an important role in the development of ALI, which is characterized by polarization and inflammatory regulation. The polarization process of macrophages is related to membrane binding proteins and adaptors. Protein 4.1R acts as an adaptor, linking membrane proteins to the cytoskeleton, and is involved in cell activation and cytokine secretion. However, whether protein 4.1R is involved in regulating macrophage polarization and inflammation-induced liver injury remains unknown. In this study, protein 4.1R is identified with the special effect on macrophage M1 polarization. And it is further demonstrated that protein 4.1R deficiency significantly enhance glycolytic metabolism. Mechanistically, the regulation of protein 4.1R on pyruvate kinase M2 (PKM2) plays a key role in glycolysis metabolism. In addition, we found that protein 4.1R directly interacts with toll-like receptor 4 (TLR4), inhibits the activation of the AKT/HIF-1α signaling pathway. In conclusion, protein 4.1R targets HIF-1α mediated glycolysis regulates M1 macrophage polarization, indicating that protein 4.1R is a candidate for regulating macrophage mediated inflammatory response. In conclusion, we have revealed a novel function of protein 4.1R in macrophage polarization and ALI, providing important insights into the metabolic reprogramming, which is important for ALI therapy. We have revealed a novel function of protein 4.1R in macrophage polarization and ALI, providing important insights into the metabolic reprogramming, which is important for ALI therapy.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Sepsis , Ratones , Animales , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Glucólisis , Sepsis/metabolismo
8.
World J Microbiol Biotechnol ; 39(8): 197, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37183191

RESUMEN

Our previous study indicated that ethanol-induced intracellular extracts (E-IEs) of Lactococcus lactis subsp. Lactis IL1403 (L. lactis IL1403) alleviated hangovers more effectively in mice than untreated intracellular extracts (U-IEs), but the material basis was unclear. Considering that stress-related proteins might play a significant role, the effects of ethanol induction on probiotic properties of L. lactis IL1403 and the associated stress response mechanism were initially explored in this study. E-IEs of L. lactis IL1403 showed better biological activities, significantly increased bacteria survival rates in oxidative stress environments, increased ADH activity, and enhanced proliferation in RAW264.7 and AML-12 cells. Proteomic analyses revealed that 414 proteins were significantly changed in response to ethanol induction. The expression of proteins involved in the universal stress response, DNA repair, oxidative stress response, and ethanol metabolism was rapidly upregulated under ethanol stress, and quantitative real-time PCR (qRT-PCR) results were consistent with proteomic data. KEGG pathway analysis indicated that citrate metabolism, starch and sucrose metabolism, and pyruvate metabolism were significantly enriched during ethanol stress to increase energy requirements and survival rates of stressed cells. Based on this observation, the active induction is an effective strategy for increasing the biological activity of L. lactis IL1403. Exploring the molecular mechanism and material basis of their functions in vivo can help us understand the adaptive regulatory mechanism of microorganisms.


Asunto(s)
Lactococcus lactis , Animales , Ratones , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Etanol/metabolismo , Proteómica
9.
Haematologica ; 108(9): 2487-2502, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37021526

RESUMEN

Enhancer of zeste homolog 2 (EZH2) is the lysine methyltransferase of polycomb repressive complex 2 (PRC2) that catalyzes H3K27 tri-methylation. Aberrant expression and loss-of-function mutations of EZH2 have been demonstrated to be tightly associated with the pathogenesis of various myeloid malignancies characterized by ineffective erythropoiesis, such as myelodysplastic syndrome (MDS). However, the function and mechanism of EZH2 in human erythropoiesis still remains largely unknown. Here, we demonstrated that EZH2 regulates human erythropoiesis in a stage-specific, dual-function manner by catalyzing histone and non-histone methylation. During the early erythropoiesis, EZH2 deficiency caused cell cycle arrest in the G1 phase, which impaired cell growth and differentiation. Chromatin immunoprecipitation sequencing and RNA sequencing discovered that EZH2 knockdown caused a reduction of H3K27me3 and upregulation of cell cycle proteindependent kinase inhibitors. In contrast, EZH2 deficiency led to the generation of abnormal nuclear cells and impaired enucleation during the terminal erythropoiesis. Interestingly, EZH2 deficiency downregulated the methylation of HSP70 by directly interacting with HSP70. RNA-sequencing analysis revealed that the expression of AURKB was significantly downregulated in response to EZH2 deficiency. Furthermore, treatment with an AURKB inhibitor and small hairpin RNAmediated AURKB knockdown also led to nuclear malformation and decreased enucleation efficiency. These findings strongly suggest that EZH2 regulates terminal erythropoiesis through a HSP70 methylation-AURKB axis. Our findings have implications for improved understanding of ineffective erythropoiesis with EZH2 dysfunction.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Eritropoyesis , Histonas , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Eritropoyesis/genética , Histonas/metabolismo , Metilación , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
10.
Iran J Immunol ; 20(1): 36-44, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36932908

RESUMEN

Background: Allergic dermatitis (AD) is an inflammatory skin disease that arises from abnormal T lymphocyte activation. A recombinant fusion protein comprising Helicobacter pylori neutrophil-activating protein and maltose binding protein, rMBP-NAP, has been documented as a novel immunomodulatory TLR agonist. Objective: To explore the effect of the rMBP-NAP on the OXA-induced AD in a mouse model and clarify the possible action mechanism. Methods: The AD animal model was induced by repeated administration of oxazolone (OXA) in BALB/c mice. H&E staining was used to analyze the ear epidermis thickness and the number of infiltrating inflammatory cells. TB staining was used to detect mast cell infiltration in the ear tissue. ELISA was used to analyze the secretion of cytokines IL-4 and IFN-γ in peripheral blood. qRT-PCR was used to determine the expression levels of IL-4, IFN-γ, and IL-13 in ear tissue. Results: OXA induced the establishment of an AD model. After the rMBP-NAP treatment, the thickness of the ear tissue and the number of mast cells infiltrated in AD mice reduced, and the serum and ear tissue levels of IL-4 and IFN-γ increased, but the ratio of IFN-γ (rMBP-NAP group)/IL-4 (rMBP-NAP group) was greater than the ratio of IFN-γ (sensitized group)/IL-4 (sensitized group). Conclusion: The rMBP-NAP improved the disease symptoms including skin lesions in AD, alleviated the inflammation in ear tissue, and restored the Th1/2 balance by inducing a shift from the Th2 to the Th1 response. The results of our work support the use of rMBP-NAP as an immunomodulator for AD treatment in future investigations.


Asunto(s)
Dermatitis Atópica , Proteínas Recombinantes de Fusión , Balance Th1 - Th2 , Animales , Ratones , Citocinas/metabolismo , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/terapia , Interleucina-4/metabolismo , Ratones Endogámicos BALB C , Oxazolona , Células Th2 , Proteínas Recombinantes de Fusión/farmacología
11.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835189

RESUMEN

Cytoskeleton protein 4.1 is an essential class of skeletal membrane protein, initially found in red blood cells, and can be classified into four types: 4.1R (red blood cell type), 4.1N (neuronal type), 4.1G (general type), and 4.1B (brain type). As research progressed, it was discovered that cytoskeleton protein 4.1 plays a vital role in cancer as a tumor suppressor. Many studies have also demonstrated that cytoskeleton protein 4.1 acts as a diagnostic and prognostic biomarker for tumors. Moreover, with the rise of immunotherapy, the tumor microenvironment as a treatment target in cancer has attracted great interest. Increasing evidence has shown the immunoregulatory potential of cytoskeleton protein 4.1 in the tumor microenvironment and treatment. In this review, we discuss the role of cytoskeleton protein 4.1 within the tumor microenvironment in immunoregulation and cancer development, with the intention of providing a new approach and new ideas for future cancer diagnosis and treatment.


Asunto(s)
Proteínas del Citoesqueleto , Neoplasias , Humanos , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Inmunoterapia , Microambiente Tumoral
12.
J Exp Clin Cancer Res ; 42(1): 46, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36793126

RESUMEN

BACKGROUND: Exosome is crucial mediator and play an important role in tumor angiogenesis. Tip cell formation is a prerequisite for persistent tumor angiogenesis which causes tumor metastasis. However, the functions and underlying mechanisms of tumor cell-derived exosomes in angiogenesis and tip cell formation remain less understood. METHODS: Exosomes derived from serum of colorectal cancer (CRC) patients with metastasis/non-metastasis and CRC cells were isolated by ultracentrifugation. CircRNAs in these exosomes were analyzed by circRNA microarray. Then, exosomal circTUBGCP4 was identified and verified by quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). Loss- and gain-of-function assays were performed to explore the effect of exosomal circTUBGCP4 on vascular endothelial cell tipping and colorectal cancer metastasis in vitro and in vivo. Mechanically, bioinformatics analysis, biotin-labeled circTUBGCP4/ miR-146b-3p RNA pulldown, RNA immunoprecipitation (RIP), and luciferase reporter assay were used to confirm the interaction among circTUBGCP4, miR-146b-3p, and PDK2. RESULTS: Here, we showed that exosomes derived from CRC cells enhanced vascular endothelial cell migration and tube formation via inducing filopodia formation and endothelial cell tipping. We further screened the upregulated circTUBGCP4 in serum of CRC patients with metastasis compared to non-metastasis. Silencing circTUBGCP4 expression in CRC cell-derived exosomes (CRC-CDEs) inhibited endothelial cell migration, tube formation, tip cell formation, and CRC metastasis. Overexpression of circTUBGCP4 had opposite results in vitro and in vivo. Mechanically, circTUBGCP4 upregulated PDK2 to activate Akt signaling pathway by sponging miR-146b-3p. Moreover, we found that miR-146b-3p could be a key regulator for vascular endothelial cell dysfunction. Exosomal circTUBGCP4 promoted tip cell formation and activated the Akt signaling pathway by inhibiting miR-146b-3p. CONCLUSIONS: Our results suggest that colorectal cancer cells generate exosomal circTUBGCP4, which causes vascular endothelial cell tipping to promote angiogenesis and tumor metastasis by activating Akt signaling pathway.


Asunto(s)
Neoplasias Colorrectales , Exosomas , MicroARNs , ARN Circular , Transducción de Señal , Humanos , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/patología , Células Endoteliales/metabolismo , Exosomas/metabolismo , MicroARNs/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética
13.
Crit Rev Food Sci Nutr ; 63(20): 4728-4743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34845952

RESUMEN

With the accelerated pace of modern life, people are facing more and more health pressure. The study of polysaccharides seemed a good choice as a potential treasure trove. Polysaccharides, one of the four basic substances (proteins, nucleic acids, lipids and carbohydrates) that constitute life activities, are obviously an underrated macromolecular substance with great potential. Compared with protein and nucleic acid, the research of polysaccharides is still in the primary stage. The relationship between structure and function of polysaccharides is not clear. In this review, we highlighted the main methods of extraction, purification and structure identification of polysaccharides; summarized their biological activities including immunoregulation, hypoglycemic, anti-tumor, anti-virus, anti-coagulation, and so on. Particularly, the relationship between their structures and activities was described. In addition, the applications of polysaccharides in health food, medicine and cosmetics were also reviewed. This review can help polysaccharide researchers quickly understand the whole process of polysaccharides research, and also provide a reference for the comprehensive utilization of polysaccharides. We need to standardize the research of polysaccharides to make the experimental data more universal, and take it as important references in the review process. Glycomic may appear as the next "omic" after genomic and proteomic in the future. This review provides support for the advancement of glycomics.


Asunto(s)
Polisacáridos , Proteómica , Humanos , Polisacáridos/química , Carbohidratos , Antioxidantes , Cognición
14.
Food Res Int ; 162(Pt A): 111904, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461178

RESUMEN

Xiguajiang (XGJ) is one kind of Chinese traditionally fermented soybean food. The aim of this study was to identify core bacterial communities and volatile compounds and explore their relationships in XGJ samples obtained from different manufacturers. Results showed that Bacillus, Staphylococcus, Weissella, and Chromohalobacter were the predominant bacterial genus, although their relative abundance is quite diverse. Larger relative contents of esters and alcohols were detected in XGJ. Moreover, the results of E-nose analysis indicated that nitrogen oxides compounds, pyrazines, and ketones compounds also played a critical role in XGJ unique flavor. The correlation analysis suggested that 3-methyl-butanol, ethoxybenzene, ethyl acetate, acetaldehyde, and 2-(4-methyl-3-cyclohexen-1-yl)-2-propanyl acetate had a significant correlation with Enterobacter, Clostridium, Pseudomonas, Streptomyces, Weissella, Staphylococcus, and Bacillus. These results may provide vital information to understand the role of the microbiota in developing flavor in XGJ products, and improve the quality and safety of XGJ production in industries.


Asunto(s)
Bacillus , Microbiota , Weissella , Condimentos , Alimentos , Compuestos de Nitrógeno , China
15.
Cytotechnology ; 74(4): 459-467, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36110155

RESUMEN

Melanoma is the most aggressive skin cancer with increasing incidence and poor prognosis all over the world. Recent research has found that immunological abnormalities played a key role in the pathogenesis of melanoma. Increased understanding of tumor immune mechanisms has led to attract more attention for the potential of TLR agonists on treatment of melanoma. The present study aimed to determine the potential and efficacy of a novel TLR agonist rMBP-NAP for antitumor treatment in murine model of B16 melanoma. Subcutaneous administration of mice with rMBP-NAP remarkably inhibited tumor growth and tumor inhibitory rate was 77.72%. Additionally, rMBP­NAP significantly upregulated the number of mature DCs (P < 0.05). Furthermore, the number and activation of CD4+ and CD8+ T cells were prominently enhanced following rMBP-NAP stimulation (P < 0.05). Overall, these results demonstrated that rMBP-NAP possessed the potential to be a novel immunomodulatory candidate drug for treating melanoma.

16.
Arch Microbiol ; 204(7): 428, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35751720

RESUMEN

There are numerous factors restricting wide application of lactic acid bacteria (LAB) in dairy industry, causing urgent demands for novel bioprotectants. Protective effects and metabolites of Lactococcus lactis subsp. lactis (L. lactis) from ultraviolet (UV)-induced supernatant were investigated and the protective mechanism was explored. The strain viability of the group treated with the supernatant of continuous UV irradiation (V1) and the group with intermittent UV irradiation (V2) was 8.45 and 14.13 times of the control group, respectively. Further exploration on the protective of L. lactis supernatant, under different dose of UV treatment, showed it was dose-dependent. The condition for the supernatant with best protective effect was vertical distance 50.00 cm, horizontal distance 25.00 cm, intermittent UV irradiation (30 s interval 30 s) for 4.5 min (V2), which was chose for untargeted metabolite analysis. And that in V1 was for comparative study. There were 181 up-regulated metabolites in V1 and 161 up-regulated metabolites in V2, respectively. Most of the up-regulated metabolites were related to secondary metabolite synthesis, environmental microbial metabolism, antibiotic synthesis and amino acid biosynthesis. Notably, production of dithiothreitol (DTT) in V2 was 65.2-fold higher than that in the control group. Trehalose in ABC transporter pathway was also up-regulated in the metabolites induced by UV. Results indicated that L. lactis could adapt to the UV stress by adjusting metabolic pathways and producing special metabolites to protect itself. This research offers the basis for robust strain development and contributes to initial study on potential bioprotectant.


Asunto(s)
Lactococcus lactis , Adaptación Fisiológica , Lactococcus lactis/metabolismo
17.
J Ethnopharmacol ; 290: 115077, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35131339

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: As a common medicinal and edible plant, Zingiber officinale Roscoe (ginger) is often used for the prevention of motion sickness. However, the mechanism of its anti-motion sickness remains to be elucidated. AIM OF THE STUDY: To explore novel treatment for motion sickness with less side effects, anti-motion sickness effect of ginger (Zingiber officinale) extract (GE) and the possible molecular mechanisms were investigated. MATERIALS AND METHODS: The anti-motion sickness effect of ginger was evaluated through mice animal experimental models. Components of ginger that might contribute to the anti-motion sickness effect were analyzed by LC-MS/MS. Subsequently, biochemical analysis integrated with serum metabolomic profiling were performed to reveal the systematic response of motion sickness mice to ginger extract's amelioration effect. RESULTS: Exhaustive swimming time of mice in the GE group reached 8.9 min, which was 52.2% longer than that in the model group. Motion sickness index scores and time taken traversing balance beam of mice in the GE group were decreased by 53.2% and 38.5%, respectively. LC-MS/MS analysis suggested that various active ingredients in GE, such as gingerol, ginger oil and terpenoids, might contribute to its appealing anti-motion sickness activity. Biochemical analysis revealed that GE can relieve motion sickness through reducing histamine and acetylcholine release in vestibular system, regulating fatty acid oxidation, sugar metabolism and bile acid metabolism in mice. CONCLUSION: Gavage of mice with GE can effectively relieve the symptoms of autonomic nervous system dysfunction, improve the balance and coordination ability and ameliorate the ability to complete complex work after rotation stimulation. GE has attractive potential for development and utilization as novel anti-motion sickness food or drugs.


Asunto(s)
Mareo por Movimiento/patología , Extractos Vegetales/farmacología , Zingiber officinale/química , Acetilcolina/metabolismo , Animales , Animales no Consanguíneos , Conducta Animal/efectos de los fármacos , Ácidos y Sales Biliares/metabolismo , Catecoles/farmacología , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Ácidos Grasos/metabolismo , Alcoholes Grasos/farmacología , Histamina/metabolismo , Masculino , Ratones , Aceites de Plantas/farmacología , Azúcares/metabolismo , Espectrometría de Masas en Tándem , Terpenos/farmacología
19.
Front Oncol ; 11: 746789, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745970

RESUMEN

Cancer drug resistance has always been a major difficulty in cancer therapy. In the face of drug pressure, resistant cancer cells show complex molecular mechanisms including epigenetic changes to maintain survival. Studies prove that cancer cells exhibit abnormal m6A modification after acquiring drug resistance. m6A modification in the target RNA including non-coding RNA can be a controller to determine the fate and metabolism of RNA by regulating their stability, subcellular localization, or translation. In particular, m6A-modified non-coding RNA plays multiple roles in multiple drug-resistant cancer cells, which can be a target for cancer drug resistance. Here, we provide an overview of the complex regulatory mechanisms of m6A-modified non-coding RNA in cancer drug resistance, and we discuss its potential value and challenges in clinical applications.

20.
Appl Microbiol Biotechnol ; 105(24): 9285-9295, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34778911

RESUMEN

Exposure to ionizing radiation (IR) tends to cause serious health concerns. Thus, radioprotective agents are vital for the population exposed to radiation. As microorganisms have the advantages of fast reproduction and no geographical restrictions, direct microbe-based and environmental induction compounds are thriving radioprotectants resources. Oxidative system and oxidase in Acetobacter pasteurianus are unique and intriguing, the radioprotective effect of the cell-free extract from A. pasteurianus (APE) and 60Coγ-treated extract (IRE) were comparatively investigated in the present study. The survival rate of A. pasteurianus with IRE addition was 149.1% in H2O2 damage test, while that with APE was only 10.4%. The viability of 60Coγ-treated AML-12 cells was increased by 18.8% with IRE addition, yet APE showed no significant radioprotective effect. Moreover, in 60Coγ-treated mice, IRE could significantly protect the white blood cell, improve the liver index, and attenuate the injuries of immune organs in mice. Administration of IRE significantly raised the activities of superoxide dismutase (SOD) and reduced the products of lipid peroxidation. These results clarified that gavage with APE and IRE presented notable antioxidant and radioprotective efficacy. A. pasteurianus showed appealing potential to be novel radioprotective bioagents and 60Coγ treatment on microbe could be a new method for the development of better radioprotectant. KEY POINTS: • 60Coγ induction could improve the radioprotective effect of APE. • IRE protected white blood cell in mice under IR. • IRE products have broad application prospects in radioprotection based on microbes.


Asunto(s)
Acetobacter , Protectores contra Radiación , Animales , Peróxido de Hidrógeno , Ratones , Radiación Ionizante , Protectores contra Radiación/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA