Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6769, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880260

RESUMEN

Post-infectious conditions present major health burdens but remain poorly understood. In Chagas disease (CD), caused by Trypanosoma cruzi parasites, antiparasitic agents that successfully clear T. cruzi do not always improve clinical outcomes. In this study, we reveal differential small molecule trajectories between cardiac regions during chronic T. cruzi infection, matching with characteristic CD apical aneurysm sites. Incomplete, region-specific, cardiac small molecule restoration is observed in animals treated with the antiparasitic benznidazole. In contrast, superior restoration of the cardiac small molecule profile is observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy, even with less parasite burden reduction. Overall, these results reveal molecular mechanisms of CD treatment based on simultaneous effects on the pathogen and on host small molecule responses, and expand our understanding of clinical treatment failure in CD. This link between infection and subsequent persistent small molecule perturbation broadens our understanding of infectious disease sequelae.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Animales , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Corazón , Progresión de la Enfermedad
2.
ACS Infect Dis ; 9(11): 2173-2189, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37883691

RESUMEN

Chagas disease (CD), caused by Trypanosoma cruzi (T. cruzi) protozoa, is a complicated parasitic illness with inadequate medical measures for diagnosing infection and monitoring treatment success. To address this gap, we analyzed changes in the metabolome of T. cruzi-infected mice via liquid chromatography tandem mass spectrometry of clinically accessible biofluids: saliva, urine, and plasma. Urine was the most indicative of infection status across mouse and parasite genotypes. Metabolites perturbed by infection in urine include kynurenate, acylcarnitines, and threonylcarbamoyladenosine. Based on these results, we sought to implement urine as a tool for the assessment of CD treatment success. Strikingly, it was found that mice with parasite clearance following benznidazole antiparasitic treatment had an overall urine metabolome comparable to that of mice that failed to clear parasites. These results provide a complementary hypothesis to explain clinical trial data in which benznidazole treatment did not improve patient outcomes in late-stage disease, even in patients with successful parasite clearance. Overall, this study provides insights into new small-molecule-based CD diagnostic methods and a new approach to assess functional responses to treatment.


Asunto(s)
Enfermedad de Chagas , Parásitos , Tripanocidas , Trypanosoma cruzi , Humanos , Ratones , Animales , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Enfermedad de Chagas/parasitología
3.
bioRxiv ; 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37425694

RESUMEN

Chagas Disease (CD), caused by Trypanosoma cruzi (T. cruzi) protozoa, is a complicated parasitic illness with inadequate medical measures for diagnosing infection and monitoring treatment success. To address this gap, we analyzed changes in the metabolome of T. cruzi-infected mice via liquid chromatography tandem mass spectrometry analysis of clinically-accessible biofluids: saliva, urine, and plasma. Urine was the most indicative of infection status, across mouse and parasite genotypes. Metabolites perturbed by infection in the urine include kynurenate, acylcarnitines, and threonylcarbamoyladenosine. Based on these results, we sought to implement urine as a tool for assessment of CD treatment success. Strikingly, it was found that mice with parasite clearance following benznidazole antiparasitic treatment had comparable overall urine metabolome to mice that failed to clear parasites. These results match with clinical trial data in which benznidazole treatment did not improve patient outcomes in late-stage disease. Overall, this study provides insights into new small molecule-based CD diagnostic methods and a new approach to assess functional treatment response.

4.
Anal Chem ; 94(30): 10567-10572, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35863111

RESUMEN

Cellular heterogeneity is generally overlooked in infectious diseases. In this study, we investigated host cell heterogeneity during infection with Trypanosoma cruzi (T. cruzi) parasites, causative agents of Chagas disease (CD). In chronic-stage CD, only a few host cells are infected with a large load of parasites and symptoms may appear at sites distal to parasite colonization. Furthermore, recent work has revealed T. cruzi heterogeneity with regard to replication rates and drug susceptibility. However, the role of cellular-level metabolic heterogeneity in these processes has yet to be assessed. To fill this knowledge gap, we developed a Single-probe SCMS (single-cell mass spectrometry) method compatible with biosafety protocols, to acquire metabolomics data from individual cells during T. cruzi infection. This study revealed heterogeneity in the metabolic response of the host cells to T. cruzi infection in vitro. Our results showed that parasite-infected cells possessed divergent metabolism compared to control cells. Strikingly, some uninfected cells adjacent to infected cells showed metabolic impacts as well. Specific metabolic changes include increases in glycerophospholipids with infection. These results provide novel insight into the pathogenesis of CD. Furthermore, they represent the first application of bioanalytical SCMS to the study of mammalian-infectious agents, with the potential for broad applications to study infectious diseases.


Asunto(s)
Enfermedad de Chagas , Enfermedades Transmisibles , Trypanosoma cruzi , Animales , Enfermedad de Chagas/parasitología , Mamíferos , Espectrometría de Masas , Metabolómica
5.
Invest Ophthalmol Vis Sci ; 58(10): 4375­4383, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28813718

RESUMEN

Purpose: Transgenic mice overexpressing serum retinol-binding protein (RBP4-Tg) develop progressive retinal degeneration, characterized by microglia activation, yet the precise mechanisms underlying retinal degeneration are unclear. Previous studies showed RBP4-Tg mice have normal ocular retinoid levels, suggesting that degeneration is independent of the retinoid visual cycle or light exposure. The present study addresses whether retinal degeneration is light-dependent and RBP4-dependent by testing the effects of dark-rearing and pharmacological lowering of serum RBP4 levels, respectively. Methods: RBP4-Tg mice reared on normal mouse chow in normal cyclic light conditions were directly compared to RBP4-Tg mice exposed to chow supplemented with the RBP4-lowering compound A1120 or dark-rearing conditions. Quantitative retinal histological analysis was conducted to assess retinal degeneration, and electroretinography (ERG) and optokinetic tracking (OKT) tests were performed to assess retinal and visual function. Ocular retinoids and bis-retinoid A2E were quantified. Results: Dark-rearing RBP4-Tg mice effectively reduced ocular bis-retinoid A2E levels, but had no significant effect on retinal degeneration or dysfunction in RBP4-Tg mice, demonstrating that retinal degeneration is light-independent. A1120 treatment lowered serum RBP4 levels similar to wild-type mice, and prevented structural retinal degeneration. However, A1120 treatment did not prevent retinal dysfunction in RBP4-Tg mice. Moreover, RBP4-Tg mice on A1120 diet had significant worsening of OKT response and loss of cone photoreceptors compared to RBP4-Tg mice on normal chow. This may be related to the very significant reduction in retinyl ester levels in the retina of mice on A1120-supplemented diet. Conclusions: Retinal degeneration in RBP4-Tg mice is RBP4-dependent and light-independent.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Traumatismos Experimentales por Radiación/genética , Retina/efectos de la radiación , Degeneración Retiniana/genética , Proteínas Plasmáticas de Unión al Retinol/genética , Animales , Adaptación a la Oscuridad , Electrorretinografía , Femenino , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Piperidinas/farmacología , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Retinoides/metabolismo , Proteínas Plasmáticas de Unión al Retinol/antagonistas & inhibidores , Proteínas Plasmáticas de Unión al Retinol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA