Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 34(46)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36067787

RESUMEN

The twist-bend nematic (Ntb) phase is a recent addition to the family of nematic (N) phases of liquid crystals (LCs). A net polar order in the Ntbphase under an external electric field is interesting and it was predicted in several recent theoretical studies. We investigated the field-induced polarization behaviour, dielectric, and electro-optic properties of a bent LC dimer CB7CB in the N and Ntbphases. A threshold-dependent polarization current response was obtained in both the phases under triangular and square-wave input electric fields, existing till frequencies as high as 150 Hz. The polarization switching times were found in ∼1 ms region, especially in the N phase. In the Ntbphase, electric field-induced deformation of the helical structure was observed, like ferroelectric LCs. Dielectric measurements revealed the presence of cybotactic clusters via collective relaxations. The dielectric anisotropy (Δϵ) is negative at the frequencies of polarization measurements. The net polarization resulted from field-induced reorientation of cybotactic clusters and additionally from the field-induced deformation of helical structures in the Ntbphase. We explored the possibility of ionic contributions to the net polarization by synthesizing TiO2nanoparticles (NPs) dispersed CB7CB LC nanocomposite. Incorporation of the NPs resulted in reduction of the collective order, increase in the ionic impurity content and conductivity, but an extinction of the field-induced polarization response. Our results demonstrate that the net polarization has competing contributions from both ferroelectric-like and ionic origin (up to ∼10 Hz) in the LC phases, but it becomes dominantly ferroelectric-like at higher frequencies.

2.
J Phys Chem B ; 125(41): 11582-11590, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34618451

RESUMEN

Tunability of fluorescence intensity is an essential parameter for enhancing the versatility of devices like emissive displays and solar cells. Soft photonic crystals, with their tunable photonic band gap (PBG), are highly sought-after systems for such purposes. Here, we report modulation of photoluminescence (PL) intensity in a fluorescent dye-doped blue phase liquid crystal, a 3D soft photonic crystal. On cooling, from the isotropic fluid phase, the PL intensity gets enhanced due to the overlapping of the emission wavelength of the dye with the photonic band edge. However, the PL intensity decreases on the application of an electric field, despite both thermal and electric fields having a similar effect (red shift) on the PBG. The contrasting behavior of PL intensity, also observed in composites obtained by varying the dye and the chiral dopant (handedness), is discussed in terms of scattering pathways for the emitted photons. The time-resolved PL studies show a reduction in the lifetime of the excited species upon cooling, validating the thermal dependence of PL intensity modulation due to Purcell effect. The facile modulation of PL intensity in the dye-doped blue phase system makes it appealing from the point of view of high-performance photonic applications.

3.
Phys Rev E ; 103(4-1): 042701, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34005968

RESUMEN

Colloidal systems comprising solid or fluid particles dispersed in nematic monodomains are known to be a convenient means to study topological defects. Recent experiments have shown that twist-bend nematic (N_{TB}) droplets in a nematic matrix act as colloidal particles that lead to the formation of elastic dipoles, quadrupoles, and their ordered clusters. In this study, we examine the effect of low-frequency (f∼mHz) electric fields on such defect configurations. We find that (i) the hyperbolic hedgehogs of elastic dipoles shift toward the negative electrode in static fields and perform oscillatory motion in AC fields, indicating the presence of nonvanishing flexoelectric polarization in the field-free state; (ii) the elastic dipoles, propelled by forces of backflow due to coupled flexoelectric and dielectric distortions, drift uniformly along their axes with the N_{TB} drops in lead; (iii) the translational velocity v_{d} increases linearly with both f and the diameter of N_{TB} drops; and (iv) with increasing applied voltage U, v_{d}(U) exhibits a monotonic, slightly nonlinear variation at f≤200mHz, tending toward linearity at higher frequencies.

4.
Soft Matter ; 16(32): 7479-7491, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32720673

RESUMEN

Colloids formed of solid/fluid particle dispersions in oriented nematic liquid crystals are known to be an ideal means of realizing fundamentally significant topological defect geometries. We find, experimentally, that twist-bend nematic (NTB) droplets formed in the N-NTB biphasic regime, either of pure compounds or mesogenic mixtures, completely mimic colloidal particles in their ability to generate a rich variety of defects. In the biphasic regime, the topological features of both liquid crystal colloids and chiral nematic droplets are revealed by (i) topological dipoles, quadrupoles and their patterned clusters formed in planar nematic liquid crystals orientationally perturbed by coexisting NTB drops, (ii) the transformation of hyperbolic hedgehogs into knotted Saturn rings encircling the NTB drops dispersed in a 90°-twisted nematic matrix and (iii) the Frank-Pryce defect texture evident in smaller (relative to sample thickness) NTB drops. In larger drops with fingerlike outgrowths, additional line defects appear; most of these are deemed to be pairs of disclinations to which are attached pairs of screw dislocations intervening in the growth process of the NTB droplets.

5.
Phys Rev E ; 101(3-1): 032704, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32290021

RESUMEN

We report experimental studies on the phase behavior of binary mixtures of 1″,7″-bis(4-cyanobiphenyl-4'-yl)heptane (CB7CB) and 4,4-diheptyloxyazoxybenzene, which exhibit, apart from the nematic (N) and twist-bend nematic (N_{TB}) phases, the induced smectic-A (Sm-A) phase for weight fraction of CB7CB between 0.05 and 0.70. In planar nematic layers, the N_{TB} phase separates as droplets of tactoidlike planform; the chirality of droplets manifests in the optical dissimilarity between their opposite angular ends. Our main result is that, in the appropriate two phase region, Sm-A nuclei with positive dielectric anisotropy change over to disks immersed in the nematic above some electric field, their edges decorated by periodic bright spots, a result which was earlier reported in another binary system exhibiting the induced Sm-A phase [R. Pratibha and N. V. Madhusudana, Physica A 224, 9 (1996)10.1016/0378-4371(95)00311-8]. We develop a simple theory for the threshold of this distortion, which is a periodic undulation of the edge of the disk, demonstrating that it arises from saddle-splay elasticity of Sm-A, the low Sm-A-N interfacial tension unable to suppress the distortion. The observed increases in the number of bright spots with field, and with the radius of the disk at a given field, in both the experimental systems are also accounted for by the model. The distortion, which results in the most direct visualization of saddle splay in Sm-A, is also exhibited by disks nucleating on surfaces treated for homeotropic anchoring.

6.
Soft Matter ; 15(48): 9982-9990, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31755520

RESUMEN

We report studies on the Frank elastic constant behaviour of a liquid crystal gel system exhibiting the twist bend nematic (Ntb) phase. Physical gelation is observed to ease the splay and stabilize the twist deformations in the nematic phase preceding the Ntb. More importantly, the ultra-low bend elastic constant (K33) of the system is enhanced by an order of magnitude on gelation. The magnitude of K33 remains high even in the vicinity of the Ntb phase, which otherwise is susceptible to bend deformations. This phenomenon is explained from the point of view of polar interactions in the Ntb system. XRD and dynamic rheology along with the elastic constant data validate this argument. Another salient feature of the system is that gel fibers grown in the direction orthogonal to the helical axis vanish in the Ntb phase as observed from polarizing optical microscopy. A possible reason for this is discussed on the basis of ordering developed in the surrounding medium. This feature gives the possibility of using the Ntb phase as a tool to imprint directional microstructures with a gel network.

7.
J Phys Chem B ; 123(6): 1423-1431, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30668915

RESUMEN

Nanoscale structures in fluid media normally require techniques such as freeze fracture electron microscopy and atomic force microscopy for their visualization. As demonstrated in the present study, the surface modification due to nanoscale clusters occurring intrinsically in nematics made of bent-shaped molecules with either rigid or flexible cores leads to microscale structures, which are visible in an optical microscope. The underlying physical mechanism proposed here involves a quasiperiodic change in anchoring conditions on untreated glass plates for the medium made of islands of clusters surrounded by unclustered molecules. The resulting pattern of stripes outlines the director-normal field around line defects in the well-known schlieren texture. The instability, which is seen over most of the nematic range, with increasing visibility under continued cooling of the sample, sets the nematics made of bent-shaped molecules apart from the classical nematics of rod-shaped molecules.

8.
Soft Matter ; 14(26): 5393-5406, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29930998

RESUMEN

We report on the instabilities in the Freedericksz state of the twist-bend nematic (NTB) liquid crystal 1'',7''-bis(4-cyanobiphenyl-4'-yl)heptane (CB7CB). The quasi homeotropic NTB state, into which a planar (untwisted or 90°-twisted) nematic CB7CB layer transits under a strong electric field, is found to be unstable despite the material being dielectrically positive. Close to the NTB melting point, destabilization occurs through the formation of metastable toric focal conic domains (TFCDs) that, in time, transform into parabolic focal conic domains (PFCDs) with the confocal parabolae in vertical planes through the layer normal. This transformation occurs by a novel process of continued dissociation of TFCDs. We outline how the extended Volterra process could help in a general appreciation of focal conic defects in the NTB phase. At relatively lower temperatures, stripes develop competingly with TFCDs. Identifiable as oily streaks, they are both localized and polarity sensitive; they form close to the substrates; and in low frequency square wave fields, they get suppressed at the cathode and augmented at the anode at each polarity switch. The study also dwells on the N-NTB-N sandwich region, found between the N and NTB states under a small temperature gradient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA