Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39082166

RESUMEN

INTRODUCTION: This research aims to create a gel formulation of Brassica juncea leaf extract and assess its anti-inflammatory properties using an in silico study. The anti-inflamma-tory activity has been compared with Diclofenac molecules in PDB id: 4Z69. Further, the Ab-sorption, Distribution, Metabolism, Excretion, and Toxicity analysis has been performed to en-sure the therapeutic potential and safety of the drug development process. The Quality by De-sign tool has been applied to optimize formulation development. METHODS: The extracted gel is characterized by performing Fourier transformer infrared, zeta potential, particle size, Scanning Electron Microscope, and entrapment efficiency. Further, the formulation is evaluated by examining its viscosity, spreadability, and pH measurement. An In-vitro study of all nine extract suspensions was conducted to determine the drug contents at 276 nm. RESULTS: The optimized suspension has shown the maximum percentage of drug release (82%) in 10 hours of study. Animal study for anti-inflammatory activity was performed, and results of all five groups of animals compared the % inhibition of paw edema at three hours; gel (56.70 %), standard (47.86 %), and (39.72 %) were found. CONCLUSION: The research could conclude that the anti-inflammatory activity of gel formulation is high compared to extract, and a molecular docking study validates the anti-inflammatory ther-apeutic effects. ADMET analysis ensures the therapeutic effects and their safety.

2.
Heliyon ; 10(11): e31937, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38868043

RESUMEN

This study aims to pharmacologically validate Haridra Khanda (HK) and Manjishthadi Kwatham (brihat) (MMK) in allergy management using invivo and invitro studies to rationalize the prescription of these two ayurvedic polyherbal drug formulations, which are currently used in Indian government hospitals. Experimental animals received HK and MMK orally from day 0 to day 14 and histamine (1 mg/kg b.w/i.v) and 1 % evans blue (EB) (0.1 mL) via tail vein on day 14. The compound 48/80 (intracutaneous) challenged mice model followed the same technique. The former mimicked acute anaphylaxis and the latter mast cell degranulation. For both models, EB dye leakage was quantified spectrophotometrically to determine vascular permeability. Plasma histamine was measured in Compound 48/80-induced animals using LC-ESI-MS/MS. The guineapig received HK and MMK p.o. and 0.6 % histamine sprayed in a histamine chamber to simulate allergic rhinitis. Blood eosinophil count and sneeze rate were measured in histamine-challenged guineapigs. Goat R.B.C. membrane stability assay (mammalian cell membrane toxicity) and intracellular histamine-induced cytosolic Ca2+ release assay in Chinese hamster ovary (CHO) cells were performed in vitro. For both histamine and Compound 48/80 challenged animals, HK (22.81 % and 14.58 %) and MMK (19.71 % and 22.40 %) significantly reduced EB dye leakage (p < 0.05). Both formulations, HK and MMK considerably (p < 0.05) decreased plasma histamine (29.62 % and 25.37 % respectively) in mice and eosinophilic count (11.56 % and 9.94 % respectively) and sneeze rate (42.58 % and 29.03 % respectively) in guinea pigs. In membrane stability experiment, HK and MMK reduced RBC lysis. Both HK and MMK raw/dialysate blocked CHO cell cytosolic Ca2+ release. HK and MMK activities mimic mast cell stabilization with possible H1 receptor inactivation seen by decreased Ca2+ efflux and thus indicate potential for allergic rhinitis management. The combination of activities is usually related with curative and prophylactic therapy and might lead future clinical trials and therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA