Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(29): 25783-25797, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35910179

RESUMEN

The deterioration behaviors of Cu/ZnO/Al2O3 (CZA) catalysts upon different Cu contents were elucidated. The fresh and spent catalysts after being used in CO and CO2 hydrogenation at 250 °C under atmospheric pressure were properly characterized using various techniques including X-ray powder diffraction, X-ray photoelectron spectroscopy, and temperature-programmed reduction for the changes of metal sites, while the textural and chemical properties and carbon deposition on spent CZA catalysts were analyzed by N2 physisorption, energy-dispersive X-ray spectroscopy, and temperature-programmed oxidation. During the hydrogenation reaction for both CO and CO2, the unstable Cu0 site on the spent CZA catalyst having a low Cu loading (sCZA-L) was oxidized to CuO and the aggregation of metal crystallite sites (Cu-ZnO and ZnO) was observed. Moreover, the amount of carbon deposition on sCZA-L (ca. >2%) is higher than the spent CZA catalyst having a high Cu loading (sCZA-H, ca. <0.5%). These phenomena led to a decrease in the surface area and the blockage of active sites. These findings can be determined on the catalytic deactivation and the obvious decrease in the catalytic activity of the CZA catalyst having a low Cu content (CZA-L, Cu:Zn = 0.8).

2.
Heliyon ; 7(7): e07682, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34386633

RESUMEN

The ternary Cu/ZnO/Al2O3 (CZA) catalysts having different Cu loading were prepared by the co-precipitation method. Then, they were used in CO and CO2 hydrogenation to produce methanol under atmospheric pressure at 250 °C. The high Cu loading CZA catalyst (CZA-H) resulted in the enhancement of structural features and textural properties (e.g., BET surface area and the crystallite size of copper species). Furthermore, the conversion of CO and CO2 over CZA-H catalyst was apparently higher than that of the CZA-L (low Cu loading) catalyst. The major product of CO hydrogenation obtained from both catalysts was methanol, whereas in CO2 hydrogenation, the main product was CO. Deactivation of catalysts was also crucial during CO and CO2 hydrogenation. Therefore, the spent catalysts were determined to identify the nature of carbon formation. It revealed that amorphous and graphitic cokes were present. These cokes have different mechanisms in the elimination from the surface leading to influencing the deactivation process. The spent CZA-L was found to have higher carbon content, which was around 2.3% and 3.1% for CO and CO2 hydrogenation, respectively. Besides the amorphous coke, the graphitic coke was also observed in CZA-L after time on stream for 5 h.

3.
J Oleo Sci ; 67(8): 1005-1014, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30068826

RESUMEN

This study aims to investigate the production of ethylene and diethyl ether from ethanol via catalytic dehydration using Si- and Al-based catalysts with Pd modification. First, six catalysts including H-beta zeolite (HBZ), mixed phases of γ-χ-Al2O3 (M-Al) and γ-Al2O3 (G-Al) with and without Pd modification (0.5 wt%) were prepared. The catalytic dehydration of vaporized ethanol at temperature ranging from 200 to 400°C was performed over the catalysts. For ethylene production, the most promising catalyst is HBZ (giving ethylene yield of ca. 99% at 400°C), whereas Pd modification has no significant effect on ethylene production. Considering the production of diethyl ether, it is produced at lower temperature (ca. 250°C) than that of ethylene. The most active catalyst to produce diethyl ether is HBZ with Pd modification (giving diethyl ether yield of ca. 48% at 250°C). Thus, increased diethyl ether yield can be achieved with Pd modification at low temperature for the HBZ catalyst. Other catalysts such as M-Al and G-Al can also produce significant amounts of ethylene. To elucidate the effect of Pd modification on these catalysts, different characterization techniques such as nitrogen physisorption (BET and BJH methods), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and ammonia temperature-programmed desorption were performed and further discussed in more detail.


Asunto(s)
Compuestos de Aluminio/química , Etanol/química , Éter/síntesis química , Etilenos/síntesis química , Paladio/química , Compuestos de Silicona/química , Catálisis , Química Orgánica/métodos , Desecación , Temperatura , Volatilización
4.
J Oleo Sci ; 66(2): 199-207, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28154350

RESUMEN

In the present study, the catalytic dehydration of ethanol over H-beta zeolite (HBZ) catalyst with ruthenium (Ru-HBZ) and platinum (Pt-HBZ) modification was investigated. Upon the reaction temperature between 200 and 400°C, it revealed that ethanol conversion and ethylene selectivity increased with increasing temperature for both Ru and Pt modification. At lower temperature (200 to 250°C), diethyl ether (DEE) was the major product. It was found that Ru and Pt modification on HBZ catalyst can result in increased DEE yield at low reaction temperature due to increased ethanol conversion without a significant change in DEE selectivity. By comparing the DEE yield of all catalysts in this study, the Ru-HBZ catalyst apparently exhibited the highest DEE yield (ca. 47%) at 250°C. However, at temperature from 350 to 400°C, the effect of Ru and Pt was less pronounced on ethylene yield. With various characterization techniques, the effects of Ru and Pt modification on HBZ catalyst were elucidated. It revealed that Ru and Pt were present in the highly dispersed forms and well distributed in the catalyst granules. It appeared that the weak acid sites measured by NH3 temperature-programmed desorption technique also decreased with Ru and Pt promotion. Thus, the increased DEE yields with the Ru and Pt modification can be attributed to the presence of optimal weak acid sites leading to increased intrinsic activity of the catalysts. It can be concluded that the modification of Ru and Pt on HBZ catalyst can improve the DEE yields by ca. 10%.


Asunto(s)
Etanol/química , Éter/síntesis química , Platino (Metal)/química , Rutenio/química , Zeolitas/química , Catálisis , Deshidratación , Éter/química , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA