Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Infect Dis ; 230(1): e189-e198, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052729

RESUMEN

BACKGROUND: Streptococcus pneumoniae serotype 3 remains a problem globally. Malawi introduced 13-valent pneumococcal conjugate vaccine (PCV13) in 2011, but there has been no direct protection against serotype 3 carriage. We explored whether vaccine escape by serotype 3 is due to clonal expansion of a lineage with a competitive advantage. METHODS: The distribution of serotype 3 Global Pneumococcal Sequence Clusters (GPSCs) and sequence types (STs) globally was assessed using sequences from the Global Pneumococcal Sequencing Project. Whole-genome sequences of 135 serotype 3 carriage isolates from Blantyre, Malawi (2015-2019) were analyzed. Comparative analysis of the capsule locus, entire genomes, antimicrobial resistance, and phylogenetic reconstructions were undertaken. Opsonophagocytosis was evaluated using serum samples from vaccinated adults and children. RESULTS: Serotype 3 GPSC10-ST700 isolates were most prominent in Malawi. Compared with the prototypical serotype 3 capsular polysaccharide locus sequence, 6 genes are absent, with retention of capsule polysaccharide biosynthesis. This lineage is characterized by increased antimicrobial resistance and lower susceptibility to opsonophagocytic killing. CONCLUSIONS: A serotype 3 variant in Malawi has genotypic and phenotypic characteristics that could enhance vaccine escape and clonal expansion after post-PCV13 introduction. Genomic surveillance among high-burden populations is essential to improve the effectiveness of next-generation pneumococcal vaccines.


Asunto(s)
Cápsulas Bacterianas , Filogenia , Infecciones Neumocócicas , Vacunas Neumococicas , Serogrupo , Streptococcus pneumoniae , Humanos , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/administración & dosificación , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/inmunología , Streptococcus pneumoniae/clasificación , Infecciones Neumocócicas/prevención & control , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/inmunología , Cápsulas Bacterianas/inmunología , Cápsulas Bacterianas/genética , Malaui , Adulto , Secuenciación Completa del Genoma , Preescolar , Niño , Vacunas Conjugadas/inmunología , Masculino , Genoma Bacteriano , Femenino , Adulto Joven , Lactante , Genotipo , Portador Sano/microbiología
2.
Nat Commun ; 15(1): 6291, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060226

RESUMEN

Malawi experienced its deadliest Vibrio cholerae (Vc) outbreak following devastating cyclones, with >58,000 cases and >1700 deaths reported between March 2022 and May 2023. Here, we use population genomics to investigate the attributes and origin of the Malawi 2022-2023 Vc outbreak isolates. Our results demonstrate the predominance of ST69 clone, also known as the seventh cholera pandemic El Tor (7PET) lineage, expressing O1 Ogawa (~ 80%) serotype followed by Inaba (~ 16%) and sporadic non-O1/non-7PET serogroups (~ 4%). Phylogenetic reconstruction revealed that the Malawi outbreak strains correspond to a recent importation from Asia into Africa (sublineage AFR15). These isolates harboured known antimicrobial resistance and virulence elements, notably the ICEGEN/ICEVchHai1/ICEVchind5 SXT/R391-like integrative conjugative elements and a CTXφ prophage with the ctxB7 genotype compared to historical Malawian Vc isolates. These data suggest that the devastating cyclones coupled with the recent importation of 7PET serogroup O1 strains, may explain the magnitude of the 2022-2023 cholera outbreak in Malawi.


Asunto(s)
Cólera , Brotes de Enfermedades , Filogenia , Vibrio cholerae , Malaui/epidemiología , Cólera/epidemiología , Cólera/microbiología , Humanos , Vibrio cholerae/genética , Vibrio cholerae/clasificación , Genómica , Genoma Bacteriano/genética , Profagos/genética , Genotipo , Serogrupo
3.
Microb Genom ; 10(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38896467

RESUMEN

Since the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in Malawi in 2011, there has been persistent carriage of vaccine serotype (VT) Streptococcus pneumoniae, despite high vaccine coverage. To determine if there has been a genetic change within the VT capsule polysaccharide (cps) loci since the vaccine's introduction, we compared 1022 whole-genome-sequenced VT isolates from 1998 to 2019. We identified the clonal expansion of a multidrug-resistant, penicillin non-susceptible serotype 23F GPSC14-ST2059 lineage, a serotype 14 GPSC9-ST782 lineage and a novel serotype 14 sequence type GPSC9-ST18728 lineage. Serotype 23F GPSC14-ST2059 had an I253T mutation within the capsule oligosaccharide repeat unit polymerase Wzy protein, which is predicted in silico to alter the protein pocket cavity. Moreover, serotype 23F GPSC14-ST2059 had SNPs in the DNA binding sites for the cps transcriptional repressors CspR and SpxR. Serotype 14 GPSC9-ST782 harbours a non-truncated version of the large repetitive protein (Lrp), containing a Cna protein B-type domain which is also present in proteins associated with infection and colonisation. These emergent lineages also harboured genes associated with antibiotic resistance, and the promotion of colonisation and infection which were absent in other lineages of the same serotype. Together these data suggest that in addition to serotype replacement, modifications of the capsule locus associated with changes in virulence factor expression and antibiotic resistance may promote vaccine escape. In summary, the study highlights that the persistence of vaccine serotype carriage despite high vaccine coverage in Malawi may be partly caused by expansion of VT lineages post-PCV13 rollout.


Asunto(s)
Cápsulas Bacterianas , Infecciones Neumocócicas , Vacunas Neumococicas , Serogrupo , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/patogenicidad , Vacunas Neumococicas/inmunología , Humanos , Malaui , Cápsulas Bacterianas/genética , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/prevención & control , Vacunas Conjugadas , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/inmunología , Virulencia/genética , Genotipo , Secuenciación Completa del Genoma , Proteínas Bacterianas/genética , Factores de Virulencia/genética , Preescolar , Polimorfismo de Nucleótido Simple , Lactante , Masculino
5.
Nat Commun ; 14(1): 7477, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978177

RESUMEN

Streptococcus pneumoniae causes substantial mortality among children under 5-years-old worldwide. Polysaccharide conjugate vaccines (PCVs) are highly effective at reducing vaccine serotype disease, but emergence of non-vaccine serotypes and persistent nasopharyngeal carriage threaten this success. We investigated the hypothesis that following vaccine, adapted pneumococcal genotypes emerge with the potential for vaccine escape. We genome sequenced 2804 penumococcal isolates, collected 4-8 years after introduction of PCV13 in Blantyre, Malawi. We developed a pipeline to cluster the pneumococcal population based on metabolic core genes into "Metabolic genotypes" (MTs). We show that S. pneumoniae population genetics are characterised by emergence of MTs with distinct virulence and antimicrobial resistance (AMR) profiles. Preliminary in vitro and murine experiments revealed that representative isolates from emerging MTs differed in growth, haemolytic, epithelial infection, and murine colonisation characteristics. Our results suggest that in the context of PCV13 introduction, pneumococcal population dynamics had shifted, a phenomenon that could further undermine vaccine control and promote spread of AMR.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Niño , Humanos , Animales , Ratones , Lactante , Preescolar , Streptococcus pneumoniae/genética , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/prevención & control , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Malaui/epidemiología , Virulencia/genética , Farmacorresistencia Bacteriana/genética , Vacunas Neumococicas , Serogrupo , Nasofaringe , Portador Sano/epidemiología
6.
Microbiol Resour Announc ; 12(10): e0058023, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37768056

RESUMEN

Aeromonas caviae is an increasingly recognized etiological agent of acute gastroenteritis. Here, we report five draft genomes of A. caviae isolated from suspected cholera cases during the 2022-2023 cholera outbreak in Malawi.

7.
Virus Evol ; 9(1): vead030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305707

RESUMEN

G3 rotaviruses rank among the most common rotavirus strains worldwide in humans and animals. However, despite a robust long-term rotavirus surveillance system from 1997 at Queen Elizabeth Central Hospital in Blantyre, Malawi, these strains were only detected from 1997 to 1999 and then disappeared and re-emerged in 2017, 5 years after the introduction of the Rotarix rotavirus vaccine. Here, we analysed representative twenty-seven whole genome sequences (G3P[4], n = 20; G3P[6], n = 1; and G3P[8], n = 6) randomly selected each month between November 2017 and August 2019 to understand how G3 strains re-emerged in Malawi. We found four genotype constellations that were associated with the emergent G3 strains and co-circulated in Malawi post-Rotarix vaccine introduction: G3P[4] and G3P[6] strains with the DS-1-like genetic backbone genes (G3-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 and G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2), G3P[8] strains with the Wa-like genetic backbone genes (G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1), and reassortant G3P[4] strains consisting of the DS-1-like genetic backbone genes and a Wa-like NSP2 (N1) gene (G3-P[4]-I2-R2-C2-M2-A2-N1-T2-E2-H2). Time-resolved phylogenetic trees demonstrated that the most recent common ancestor for each ribonucleic acid (RNA) segment of the emergent G3 strains was between 1996 and 2012, possibly through introductions from outside the country due to the limited genetic similarity with G3 strains which circulated before their disappearance in the late 1990s. Further genomic analysis revealed that the reassortant DS-1-like G3P[4] strains acquired a Wa-like NSP2 genome segment (N1 genotype) through intergenogroup reassortment; an artiodactyl-like VP3 through intergenogroup interspecies reassortment; and VP6, NSP1, and NSP4 segments through intragenogroup reassortment likely before importation into Malawi. Additionally, the emergent G3 strains contain amino acid substitutions within the antigenic regions of the VP4 proteins which could potentially impact the binding of rotavirus vaccine-induced antibodies. Altogether, our findings show that multiple strains with either Wa-like or DS-1-like genotype constellations have driven the re-emergence of G3 strains. The findings also highlight the role of human mobility and genome reassortment events in the cross-border dissemination and evolution of rotavirus strains in Malawi necessitating the need for long-term genomic surveillance of rotavirus in high disease-burden settings to inform disease prevention and control.

8.
J Infect Dis ; 228(5): 637-645, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37364376

RESUMEN

BACKGROUND: Maternal breastmilk is a source of pre- and pro-biotics that impact neonatal gut microbiota colonization. Because oral rotavirus vaccines (ORVs) are administered at a time when infants are often breastfed, breastmilk microbiota composition may have a direct or indirect influence on vaccine take and immunogenicity. METHODS: Using standardized methods across sites, we compared breastmilk microbiota composition in relation to geographic location and ORV response in cohorts prospectively followed from birth to 18 weeks of age in India (n = 307), Malawi (n = 119), and the United Kingdom ([UK] n = 60). RESULTS: Breastmilk microbiota diversity was higher in India and Malawi than the UK across 3 longitudinal samples spanning weeks of life 1 to 13. Dominant taxa such as Streptococcus and Staphylococcus were consistent across cohorts; however, significant geographic differences were observed in the prevalence and abundance of common and rare genera throughout follow up. No consistent associations were identified between breastmilk microbiota composition and ORV outcomes including seroconversion, vaccine shedding after dose 1, and postvaccination rotavirus-specific immunoglobulin A level. CONCLUSIONS: Our findings suggest that breastmilk microbiota composition may not be a key factor in shaping trends in ORV response within or between countries.


Asunto(s)
Microbiota , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Recién Nacido , Femenino , Humanos , Lactante , Leche Humana , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Estudios Prospectivos , Anticuerpos Antivirales , Inmunoglobulina A , Vacunas Atenuadas
9.
AIDS ; 36(14): 2045-2055, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35983828

RESUMEN

OBJECTIVE: Adults living with HIV (ALWHIV) on antiretroviral therapy (ART) are at high risk of pneumococcal carriage and disease. To help evaluate carriage risk in African ALWHIV at least 4 years after infant pneumococcal conjugate vaccination introduction in 2011, we assessed association between pneumococcal carriage and potential risk factors. METHODS: Nasopharyngeal swabs were collected from adults aged 18-40 years attending an ART clinic during rolling, cross-sectional surveys in Blantyre, Malawi between 2015 and 2019. We fitted generalized additive models to estimate the risk of sex, social economic status (SES), living with a child less than 5 years, and ART duration on carriage. RESULTS: Of 2067 adults, median age was 33 years (range 28-37), 1427 (69.0%) were women, 1087 (61.4%) were in low-middle socioeconomic-status (SES), 910 (44.0%) were living with a child less than 5 years, and median ART duration was 3 years (range 0.004-17). We estimated 38.2 and 60.6% reductions in overall and vaccine-serotype carriage prevalence. Overall carriage was associated with low SES, living with a child less than 5 years and shorter duration on ART. By contrast, vaccine-type carriage was associated with living without a child less than 5 years and male sex. CONCLUSION: Despite temporal reductions in overall and vaccine-serotype carriage, there is evidence of incomplete vaccine-serotype indirect protection. A targeted-vaccination campaign should be considered for ALWHIV, along with other public health measures to further reduce vaccine-serotype carriage and therefore disease.


Asunto(s)
Infecciones por VIH , Infecciones Neumocócicas , Adulto , Femenino , Humanos , Lactante , Masculino , Portador Sano/epidemiología , Estudios Transversales , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Malaui/epidemiología , Nasofaringe , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas , Prevalencia , Factores de Riesgo , Streptococcus pneumoniae , Recién Nacido , Preescolar
10.
Microb Genom ; 8(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35446251

RESUMEN

The transient upsurge of G2P[4] group A rotavirus (RVA) after Rotarix vaccine introduction in several countries has been a matter of concern. To gain insight into the diversity and evolution of G2P[4] strains in South Africa pre- and post-RVA vaccination introduction, whole-genome sequencing was performed for RVA positive faecal specimens collected between 2003 and 2017 and samples previously sequenced were obtained from GenBank (n=103; 56 pre- and 47 post-vaccine). Pre-vaccine G2 sequences predominantly clustered within sub-lineage IVa-1. In contrast, post-vaccine G2 sequences clustered mainly within sub-lineage IVa-3, whereby a radical amino acid (AA) substitution, S15F, was observed between the two sub-lineages. Pre-vaccine P[4] sequences predominantly segregated within sub-lineage IVa while post-vaccine sequences clustered mostly within sub-lineage IVb, with a radical AA substitution R162G. Both S15F and R162G occurred outside recognised antigenic sites. The AA residue at position 15 is found within the signal sequence domain of Viral Protein 7 (VP7) involved in translocation of VP7 into endoplasmic reticulum during infection process. The 162 AA residue lies within the hemagglutination domain of Viral Protein 4 (VP4) engaged in interaction with sialic acid-containing structure during attachment to the target cell. Free energy change analysis on VP7 indicated accumulation of stable point mutations in both antigenic and non-antigenic regions. The segregation of South African G2P[4] strains into pre- and post-vaccination sub-lineages is likely due to erstwhile hypothesized stepwise lineage/sub-lineage evolution of G2P[4] strains rather than RVA vaccine introduction. Our findings reinforce the need for continuous whole-genome RVA surveillance and investigation of contribution of AA substitutions in understanding the dynamic G2P[4] epidemiology.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Genotipo , Humanos , Filogenia , Rotavirus/genética , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Sudáfrica , Proteínas Virales/genética
11.
Vaccines (Basel) ; 10(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35335050

RESUMEN

Following the introduction of live-attenuated rotavirus vaccines in many countries, a notable reduction in deaths and hospitalisations associated with diarrhoea in children <5 years of age has been reported. There is growing evidence to suggest that live-attenuated vaccines also provide protection against other infections beyond the vaccine-targeted pathogens. These so called off-target effects of vaccination have been associated with the tuberculosis vaccine Bacille Calmette Guérin (BCG), measles, oral polio and recently salmonella vaccines, and are thought to be mediated by modified innate and possibly adaptive immunity. Indeed, rotavirus vaccines have been reported to provide greater than expected reductions in acute gastroenteritis caused by other enteropathogens, that have mostly been attributed to herd protection and prior underestimation of rotavirus disease. Whether rotavirus vaccines also alter the immune system to reduce non targeted gastrointestinal infections has not been studied directly. Here we review the current understanding of the mechanisms underlying off-target effects of vaccines and propose a mechanism by which the live-attenuated neonatal rotavirus vaccine, RV3-BB, could promote protection beyond the targeted pathogen. Finally, we consider how vaccine developers may leverage these properties to improve health outcomes in children, particularly those in low-income countries where disease burden and mortality is disproportionately high relative to developed countries.

12.
J Infect Dis ; 225(12): 2127-2136, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33033832

RESUMEN

BACKGROUND: Rotavirus vaccine (Rotarix [RV1]) has reduced diarrhea-associated hospitalizations and deaths in Malawi. We examined the trends in circulating rotavirus genotypes in Malawi over a 22-year period to assess the impact of RV1 introduction on strain distribution. METHODS: Data on rotavirus-positive stool specimens among children aged <5 years hospitalized with diarrhea in Blantyre, Malawi before (July 1997-October 2012, n = 1765) and after (November 2012-October 2019, n = 934) RV1 introduction were analyzed. Rotavirus G and P genotypes were assigned using reverse-transcription polymerase chain reaction. RESULTS: A rich rotavirus strain diversity circulated throughout the 22-year period; Shannon (H') and Simpson diversity (D') indices did not differ between the pre- and postvaccine periods (H' P < .149; D' P < .287). Overall, G1 (n = 268/924 [28.7%]), G2 (n = 308/924 [33.0%]), G3 (n = 72/924 [7.7%]), and G12 (n = 109/924 [11.8%]) were the most prevalent genotypes identified following RV1 introduction. The prevalence of G1P[8] and G2P[4] genotypes declined each successive year following RV1 introduction, and were not detected after 2018. Genotype G3 reemerged and became the predominant genotype from 2017 onward. No evidence of genotype selection was observed 7 years post-RV1 introduction. CONCLUSIONS: Rotavirus strain diversity and genotype variation in Malawi are likely driven by natural mechanisms rather than vaccine pressure.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Niño , Niño Hospitalizado , Diarrea , Heces , Gastroenteritis/epidemiología , Gastroenteritis/prevención & control , Genotipo , Humanos , Lactante , Malaui/epidemiología , Rotavirus/genética , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control
13.
Viruses ; 13(12)2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34960760

RESUMEN

Rotavirus is the major cause of severe gastroenteritis in children aged <5 years. Introduction of the G1P[8] Rotarix® rotavirus vaccine in Malawi in 2012 has reduced rotavirus-associated hospitalisations and diarrhoeal mortality. However, the impact of rotavirus vaccine on the severity of gastroenteritis presented in children requiring hospitalisation remains unknown. We conducted a hospital-based surveillance study to assess the impact of Rotarix® vaccination on the severity of gastroenteritis presented by Malawian children. Stool samples were collected from children aged <5 years who required hospitalisation with acute gastroenteritis from December 2011 to October 2019. Gastroenteritis severity was determined using Ruuska and Vesikari scores. Rotavirus was detected using enzyme immunoassay. Rotavirus genotypes were determined using nested RT-PCR. Associations between Rotarix® vaccination and gastroenteritis severity were investigated using adjusted linear regression. In total, 3159 children were enrolled. After adjusting for mid-upper arm circumference (MUAC), age, gender and receipt of other vaccines, all-cause gastroenteritis severity scores were 2.21 units lower (p < 0.001) among Rotarix®-vaccinated (n = 2224) compared to Rotarix®-unvaccinated children (n = 935). The reduction in severity score was observed against every rotavirus genotype, although the magnitude was smaller among those infected with G12P[6] compared to the remaining genotypes (p = 0.011). Each one-year increment in age was associated with a decrease of 0.43 severity score (p < 0.001). Our findings provide additional evidence on the impact of Rotarix® in Malawi, lending further support to Malawi's Rotarix® programme.


Asunto(s)
Gastroenteritis/prevención & control , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus/administración & dosificación , Rotavirus/inmunología , Preescolar , Heces/virología , Femenino , Gastroenteritis/epidemiología , Gastroenteritis/patología , Gastroenteritis/virología , Genotipo , Hospitalización , Humanos , Lactante , Malaui/epidemiología , Masculino , Rotavirus/clasificación , Rotavirus/genética , Rotavirus/aislamiento & purificación , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/patología , Infecciones por Rotavirus/virología , Índice de Severidad de la Enfermedad , Vacunación , Vacunas Atenuadas/administración & dosificación
14.
Chemosphere ; 271: 129817, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33736210

RESUMEN

Many in vivo and in vitro studies have shown that pesticides can disrupt the functioning of gut microbiota (GM), which can lead to many diseases in humans. While the tests developed by the Organization of Economic Cooperation and Development (OECD) are expected to capture most apical effects resulting from GM disruptions, exclusion of GM in the risk assessment might mischaracterize hazards or overestimate/underestimate risks, especially when extrapolating results from one species to another species or population with a substantially different GM. On the other hand, direct assessment of GM-mediated effects may face challenges in identifying hazards, since not all GM perturbations will lead to human adverse effects. In this regard, reliable and validated biomarkers for common GM-mediated adverse effects may be very useful in the identification of GM-mediated pesticide toxicity. Nevertheless, proving causality of GM-mediated effects will need modifications of Bradford Hill criteria as well as Koch's postulates, which are more suitable for the "one-pathogen" paradigm. Furthermore, risk assessment of GM-mediated effects may require pesticide toxicokinetics along the gut, possibly through modeling, and the establishment of the involvement of GM in the mechanism of action (MOA) of the pesticide. Risk assessment of GM mediated effects also requires the standardization of experimental approaches as well as the establishment of microbial reference communities, since variations exist among GM in human populations.


Asunto(s)
Microbioma Gastrointestinal , Plaguicidas , Humanos , Plaguicidas/toxicidad , Medición de Riesgo , Toxicocinética
15.
J Clin Microbiol ; 59(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33087431

RESUMEN

Accurate assessment of the serotype distribution associated with pneumococcal colonization and disease is essential for evaluating and formulating pneumococcal vaccines and for informing vaccine policy. For this reason, we evaluated the concordance between pneumococcal serotyping results by latex agglutination, whole-genome sequencing (WGS) with PneumoCaT, and DNA microarray for samples from community carriage surveillance in Blantyre, Malawi. Nasopharyngeal swabs were collected according to WHO recommendations between 2015 and 2017 by using stratified random sampling among study populations. Participants included healthy children 3 to 6 years old (vaccinated with the 13-valent pneumococcal conjugate vaccine [PCV13] as part of the Expanded Program on Immunization [EPI]), healthy children 5 to 10 years old (age-ineligible for PCV13), and HIV-infected adults (18 to 40 years old) on antiretroviral therapy (ART). For phenotypic serotyping, we used a 13-valent latex kit (Statens Serum Institut [SSI], Denmark). For genomic serotyping, we applied the PneumoCaT pipeline to whole-genome sequence libraries. For molecular serotyping by microarray, we used the BUGS Bioscience Senti-SP microarray. A total of 1,347 samples were analyzed. Concordance was 90.7% (95% confidence interval [CI], 89.0 to 92.2%) between latex agglutination and PneumoCaT, 95.2% (95% CI, 93.9 to 96.3%) between latex agglutination and the microarray, and 96.6% (95% CI, 95.5 to 97.5%) between the microarray and PneumoCaT. By detecting additional vaccine serotype (VT) pneumococci carried at low relative abundances (median, 8%), the microarray increased VT detection by 31.5% over that by latex serotyping. To conclude, all three serotyping methods were highly concordant in identifying dominant serotypes. Latex serotyping is accurate in identifying vaccine serotypes and requires the least expertise and resources for field implementation and analysis. However, WGS, which adds population structure, and microarray, which adds multiple-serotype carriage, should be considered at regional reference laboratories for investigating the importance of vaccine serotypes at low relative abundances in transmission and disease.


Asunto(s)
Pruebas de Fijación de Látex , Infecciones Neumocócicas , Adolescente , Adulto , Portador Sano/epidemiología , Niño , Preescolar , Estudios Transversales , Humanos , Lactante , Malaui/epidemiología , Nasofaringe , Análisis de Secuencia por Matrices de Oligonucleótidos , Vacunas Neumococicas , Prevalencia , Serotipificación , Adulto Joven
16.
Nat Commun ; 11(1): 2222, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376860

RESUMEN

There are concerns that pneumococcal conjugate vaccines (PCVs) in sub-Saharan Africa sub-optimally interrupt Streptococcus pneumoniae vaccine-serotype (VT) carriage and transmission. Here we assess PCV carriage using rolling, prospective nasopharyngeal carriage surveys between 2015 and 2018, 3.6-7.1 years after Malawi's 2011 PCV13 introduction. Carriage decay rate is analysed using non-linear regression. Despite evidence of reduction in VT carriage over the study period, there is high persistent residual carriage. This includes among PCV-vaccinated children 3-5-year-old (16.1% relative reduction from 19.9% to 16.7%); PCV-unvaccinated children 6-8-year-old (40.5% reduction from 26.4% to 15.7%); HIV-infected adults 18-40-years-old on antiretroviral therapy (41.4% reduction from 15.2% to 8.9%). VT carriage prevalence half-life is similar among PCV-vaccinated and PCV-unvaccinated children (3.26 and 3.34 years, respectively). Compared with high-income settings, there is high residual VT carriage 3.6-7.1 years after PCV introduction. Rigorous evaluation of strategies to augment vaccine-induced control of carriage, including alternative schedules and catch-up campaigns, is required.


Asunto(s)
Vacunas Neumococicas , Streptococcus pneumoniae/inmunología , Adolescente , Adulto , Niño , Preescolar , Estudios Transversales , Demografía , Femenino , Infecciones por VIH , Humanos , Lactante , Malaui , Masculino , Nasofaringe/inmunología , Vacunas Neumococicas/administración & dosificación , Prevalencia , Estudios Prospectivos , Serogrupo , Streptococcus pneumoniae/aislamiento & purificación , Factores de Tiempo , Vacunación , Vacunas Conjugadas/administración & dosificación , Vacunas Conjugadas/efectos adversos
17.
Mol Biol Evol ; 37(10): 3076-3080, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32442309

RESUMEN

We report on the first meeting of SMBE in Africa. SMBE Malawi was initiated to bring together African and international researchers who use genetics or genomics to study natural systems impacted by human activities. The goals of this conference were 1) to reach a world-class standard of science with a large number of contributions from Africa, 2) to initiate exchange between African and international researchers, and 3) to identify challenges and opportunities for evolutionary genomics research in Africa. As repored, we think that we have achieved these goals and make suggestions on the way forward for African evolutionary genomics research.


Asunto(s)
Evolución Biológica , Genómica , Animales , Humanos , Malaui
18.
Paediatr Perinat Epidemiol ; 34(2): 161-170, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32011017

RESUMEN

BACKGROUND: Gut microbiota composition is associated with child health, but the effect of the environment on microbiota composition is not well understood. Few studies have been conducted in low-income settings where childhood malnutrition is common and possibly related to microbiota composition. OBJECTIVES: To investigate whether gut microbiota composition in young children and their mothers is associated with different environmental exposures in rural Malawi. We hypothesized that more adverse environmental exposures would be associated with lower levels of microbiota maturity and diversity. METHODS: Faecal samples from up to 631 children and mothers participating in a nutrition intervention trial were collected at 1, 6, 12, 18, and 30 months (children) and at 1 month (mothers) after birth and analysed for microbiota composition with 16S rRNA sequencing. Bacterial OTU and genus abundances, measures of microbiota maturity and diversity, and UniFrac distances were compared between participants with different environmental exposures. The exposure variables included socio-economic status, water source, sanitary facility, domestic animals, maternal characteristics, season, antibiotic use, and delivery mode. RESULTS: Measures of microbiota maturity and diversity in children were inversely associated with maternal education at 6, 18, and 30 months and did not otherwise differ consistently between participants with different environmental exposures. Phylogenetic distance was related to season of stool sample collection at all time points. At the level of individual OTUs and genera, season of stool sample collection, type of water source, and maternal education showed most associations with child gut microbiota, while HIV status was the most important predictor of relative OTU and genus abundances in mothers. CONCLUSION: The results do not support the hypothesis that adverse environmental exposures are broadly associated with lower microbiota maturity and diversity but suggest that environmental exposures influence the abundance of several bacterial OTUs and genera and that low maternal education is associated with higher microbiota maturity and diversity.


Asunto(s)
Bacterias , Trastornos de la Nutrición del Niño , Escolaridad , Exposición a Riesgos Ambientales , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Trastornos de la Nutrición del Lactante , Adulto , Bacterias/clasificación , Bacterias/aislamiento & purificación , Trastornos de la Nutrición del Niño/diagnóstico , Trastornos de la Nutrición del Niño/epidemiología , Preescolar , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Femenino , Infecciones por VIH/diagnóstico , Infecciones por VIH/epidemiología , Humanos , Lactante , Trastornos de la Nutrición del Lactante/diagnóstico , Trastornos de la Nutrición del Lactante/epidemiología , Malaui/epidemiología , Masculino , Evaluación Nutricional , Apoyo Nutricional , Factores Socioeconómicos
19.
J Nutr ; 150(4): 918-928, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31909811

RESUMEN

BACKGROUND: Diet may alter the configuration of gut microbiota, but the impact of prenatal and postnatal nutritional interventions on infant gut microbiota has not been investigated. OBJECTIVE: We evaluated whether providing lipid-based nutrient supplements (LNSs) to mother-infant dyads promotes a more diverse and mature infant gut microbiota, compared to maternal supplementation with multiple micronutrients (MMN) or iron and folic acid (IFA). METHODS: We enrolled 869 pregnant women in a randomized trial in Malawi. There were 3 study groups, with women receiving 1 MMN capsule daily during pregnancy and 6 mo postpartum, or 1 LNS sachet (20 g) daily during pregnancy and 6 mo postpartum, or 1 IFA capsule daily (during pregnancy) then a placebo daily (postpartum). Infants in the LNS group received LNS from 6 to 18 mo; infants in the other groups did not receive supplements. The infants' fecal microbiota were characterized by PCR amplification and sequencing of the bacterial 16S rRNA gene (variable region 4). The primary outcomes were microbiota α diversity and maturation [as microbiota-for-age z score (MAZ)]. Specific associations of taxa with intervention were established with indicator species analysis (ISA). RESULTS: Primary outcomes did not differ between IFA and MMN groups, so these groups were combined (IFA + MMN). Mean ± SD α diversity was higher in the LNS group at 18 mo for Shannon index [3.01 ± 0.57 (LNS) compared with 2.91 ± 0.60 (IFA + MMN), P = 0.032] and Pielou's evenness index [0.61 ± 0.08 (LNS) compared with 0.60 ± 0.09 (IFA + MMN), P = 0.043]; no significant differences were observed at 1, 6, 12, or 30 mo. MAZ and ß diversity did not differ at any age. We found 10 and 3 operational taxonomic units (OTUs) positively associated with LNS and IFA + MMN, respectively; however, these associations became nonsignificant following false discovery rate correction at 10%. CONCLUSIONS: Prenatal and postnatal LNS intake promoted infant gut microbiota diversity at 18 mo, after 12 mo of child supplementation, but did not alter microbiota maturation. This trial was registered at clinicaltrials.gov as NCT01239693.


Asunto(s)
Desarrollo Infantil/efectos de los fármacos , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/genética , ADN/genética , ADN Bacteriano/genética , Heces , Femenino , Humanos , Lactante , Fenómenos Fisiológicos Nutricionales del Lactante , Malaui , Fenómenos Fisiologicos Nutricionales Maternos , Madres , Periodo Posparto , Embarazo , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Población Rural , Estaciones del Año
20.
Clin Infect Dis ; 70(7): 1294-1303, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31094423

RESUMEN

BACKGROUND: Pneumococcal conjugate vaccines (PCVs) have reduced pneumococcal diseases globally. Pneumococcal genomic surveys elucidate PCV effects on population structure but are rarely conducted in low-income settings despite the high disease burden. METHODS: We undertook whole-genome sequencing (WGS) of 660 pneumococcal isolates collected through surveys from healthy carriers 2 years from 13-valent PCV (PCV13) introduction and 1 year after rollout in northern Malawi. We investigated changes in population structure, within-lineage serotype dynamics, serotype diversity, and frequency of antibiotic resistance (ABR) and accessory genes. RESULTS: In children <5 years of age, frequency and diversity of vaccine serotypes (VTs) decreased significantly post-PCV, but no significant changes occurred in persons ≥5 years of age. Clearance of VT serotypes was consistent across different genetic backgrounds (lineages). There was an increase of nonvaccine serotypes (NVTs)-namely 7C, 15B/C, and 23A-in children <5 years of age, but 28F increased in both age groups. While carriage rates have been recently shown to remain stable post-PCV due to replacement serotypes, there was no change in diversity of NVTs. Additionally, frequency of intermediate-penicillin-resistant lineages decreased post-PCV. Although frequency of ABR genes remained stable, other accessory genes, especially those associated with mobile genetic element and bacteriocins, showed changes in frequency post-PCV. CONCLUSIONS: We demonstrate evidence of significant population restructuring post-PCV driven by decreasing frequency of vaccine serotypes and increasing frequency of few NVTs mainly in children under 5. Continued surveillance with WGS remains crucial to fully understand dynamics of the residual VTs and replacement NVT serotypes post-PCV.


Asunto(s)
Metagenómica , Infecciones Neumocócicas , Portador Sano/epidemiología , Niño , Humanos , Lactante , Malaui/epidemiología , Nasofaringe , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas , Serogrupo , Streptococcus pneumoniae/genética , Vacunas Conjugadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA