Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Magn Reson ; 286: 99-109, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29223566

RESUMEN

Proton-detected solid-state NMR (SSNMR) spectroscopy has attracted much attention due to its excellent sensitivity and effectiveness in the analysis of trace amounts of amyloid proteins and other important biological systems. In this perspective article, we present the recent sensitivity limit of 1H-detected SSNMR using "ultra-fast" magic-angle spinning (MAS) at a spinning rate (νR) of 80-100 kHz. It was demonstrated that the high sensitivity of 1H-detected SSNMR at νR of 100 kHz and fast recycling using the paramagnetic-assisted condensed data collection (PACC) approach permitted "super-fast" collection of 1H-detected 2D protein SSNMR. A 1H-detected 2D 1H-15N correlation SSNMR spectrum for ∼27 nmol of a uniformly 13C- and 15N-labeled GB1 protein sample in microcrystalline form was acquired in only 9 s with 50% non-uniform sampling and short recycle delays of 100 ms. Additional data suggests that it is now feasible to detect as little as 1 nmol of the protein in 5.9 h by 1H-detected 2D 1H-15N SSNMR at a nominal signal-to-noise ratio of five. The demonstrated sensitivity is comparable to that of modern solution protein NMR. Moreover, this article summarizes the influence of ultra-fast MAS and 1H-detection on the spectral resolution and sensitivity of protein SSNMR. Recent progress in signal assignment and structural elucidation by 1H-detected protein SSNMR is outlined with both theoretical and experimental aspects.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Algoritmos , Cristalización , Recolección de Datos , Protones , Receptores de GABA-B/química , Sensibilidad y Especificidad , Relación Señal-Ruido
2.
J Chem Phys ; 146(15): 154202, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28433023

RESUMEN

Rotational resonance (R2) is one of the widely applied techniques in solid-state NMR for recoupling a homonuclear dipolar interaction under magic-angle spinning (MAS). R2 occurs as the result of interference between the difference of the chemical shifts and MAS. In this work, we extend R2 to a heteronuclear dipolar interaction in the interaction frame of RF irradiation. Based on the average Hamiltonian theory, we show that the recoupling of the heteronuclear dipolar (I-S) interaction occurs at the recoupling conditions written as ΩI'±ΩS'=kωr (k=0,±1,±2), where ΩX' is the RF offset for spin-X (X = I or S) scaled by RF irradiation. The new recoupling sequence for a heteronuclear spin pair is referred to as offset-driven cross polarization along the z axis (OD-CPZ). With the robustness for RF inhomogeneity and ten recoupling conditions to choose, OD-CPZ can be a useful frequency-selective cross polarization method. Experiments and numerical simulations are shown with the results of the theoretical analysis.

3.
J Magn Reson ; 245: 94-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25023565

RESUMEN

We propose a cross polarization (CP) sequence effective under magic-angle spinning (MAS) which is tolerant to RF field inhomogeneity and Hartmann-Hahn mismatch. Its key feature is that spin locking is not used, as CP occurs among the longitudinal (Z) magnetizations modulated by the combination of two pulses with the opposite phases. We show that, by changing the phases of the pulse pairs synchronized with MAS, the flip-flop term of the dipolar interaction is restored under MAS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA