Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35566307

RESUMEN

For the first time, σ-hole interactions within like⋯like carbon-containing complexes were investigated, in both the absence and presence of the external electric field (EEF). The effects of the directionality and strength of the utilized EEF were thoroughly unveiled in the (F-C-F3)2, (F-C-H3)2, and (H-C-F3)2 complexes. In the absence of the EEF, favorable interaction energies, with negative values, are denoted for the (F-C-F3)2 and (H-C-F3)2 complexes, whereas the (F-C-H3)2 complex exhibits unfavorable interactions. Remarkably, the strength of the applied EEF exhibits a prominent role in turning the repulsive forces within the latter complex into attractive ones. The symmetrical nature of the considered like⋯like carbon-containing complexes eradicated the effect of directionality of the EEF. The quantum theory of atoms in molecules (QTAIM), and the noncovalent interaction (NCI) index, ensured the occurrence of the attractive forces, and also outlined the substantial contributions of the three coplanar atoms to the total strength of the studied complexes. Symmetry-adapted perturbation theory (SAPT) results show the dispersion-driven nature of the interactions.


Asunto(s)
Carbono , Teoría Cuántica , Electricidad , Electricidad Estática
2.
ACS Omega ; 6(39): 25476-25485, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34632205

RESUMEN

A quantum chemical study was accomplished on the σ-hole interactions of the barely explored group IV elements, for the first time, in the absence and presence of the positively and negatively directed external electric field (EEF). The analyses of molecular electrostatic potential addressed the occurrence of the σ-hole on all the inspected tetrel atoms, confirming their salient versatility to engage in σ-hole interactions. MP2 energetic findings disclosed the occurrence of favorable σ-hole interactions within the tetrel bonding complexes. The tetrel bonding interactions became stronger in the order of C < Si < Ge < Sn for F-T-F3···FH complexes with the largest interaction energy amounting to -19.43 kcal/mol for the optimized F-Sn-F3···FH complex under the influence of +0.020 au EEF. The interaction energy conspicuously evolved by boosting the magnitude of the positively directed EEF value and declining the negatively directed EEF one. The decomposition analysis for the interaction energies was also executed in terms of symmetry-adapted perturbation theory, illuminating the dominant electrostatic contribution to all the studied complexes' interactions except carbon-based interactions controlled by dispersion forces. The outcomes that emerged from the current work reported significantly how the direction and strength of the EEF affect the tetrel-bonding interactions, leading to further improvements in the forthcoming studies of supramolecular chemistry and materials science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA