Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
MethodsX ; 12: 102494, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38089152

RESUMEN

Ribosomal RNA (rRNA) gives rise to non-random small RNA fragments known as ribosomal-derived small RNAs (rsRNAs), which despite their biological importance, have been relatively understudied in comparison to other short non-coding RNAs. There exists a compelling necessity to develop a methodology for the identification, categorization, and quantification of rsRNAs from small RNA sequencing (sRNA-seq) data sets, considering the unique characteristics of ribosomal RNA (rRNA). To bridge this gap, we introduce 'rsRNAfinder' a specialized pipeline designed within the Snakemake framework. This analytical approach enables robust identification of rsRNAs using sRNA-seq datasets from Arabidopsis thaliana. Our methodology constitutes an integrated bioinformatic pipeline designed for different kinds of analysis.1.sRNA-seq data analysis: It performs in-depth analysis of reference-aligned sRNA-seq data, facilitating rsRNA annotation and quantification.2.Parametric reporting: Our pipeline provides comprehensive reports encompassing key parameters such as rsRNA size distributions, strandedness, genomic origin, and source rRNA origin.3.Illustrative validation: We have demonstrated the utility of our approach by conducting comprehensive rsRNA annotation in Arabidopsis thaliana. This validation reveals unique rsRNAs originating from all rRNA types, each of them distinguished by distinct identity, abundance, and length.

2.
J Biomol Struct Dyn ; 40(12): 5665-5686, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33459176

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) is ß-coronavirus that is responsible for the pandemic coronavirus disease 2019 (COVID-19) all over the world. The rapid spread of the novel SARS CoV-2 worldwide is raising a significant global public health issue with nearly 61.86 million people infected and 1.4 million deaths. To date, no specific drugs are available for the treatment of COVID-19. The inhibition of proteases essential for the proteolytic treatment of viral polyproteins is a conventional therapeutic strategy for conquering viral infections. In the study, molecular docking approach was used to screen potential drug compounds among the phytochemicals of Vitex negundo L. against COVID-19 infection. Molecular docking analysis showed that oleanolic acid forms a stable complex and other phyto-compounds ursolic acid, 3ß-acetoxyolean-12-en-27-oic acid and isovitexin of V. negundo natural compounds form a less-stable complex. When compared with the control the synergistic interaction of these compounds shows inhibitory activity against papain-like protease (PLpro) of SARS CoV-2 (COVID-19). The molecular dynamics (MD) simulation (50 ns) were performed on the complexes of PLpro and the phyto-compounds viz. oleanolic acid, ursolic acid, 3ß-acetoxyolean-12-en-27-oic acid and isovitexin followed by the binding free energy calculations using MM-GBSA and these molecules have stable interactions with PLpro protein binding site. The MD simulation study provides more insight into the functional properties of the protein-ligand complex and suggests that these molecules can be considered as a potential drug molecule against COVID-19. In this pandemic situation, these herbal compounds provide a rich resource to produce new antivirals against COVID-19.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Ácido Oleanólico , Vitex , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ácido Oleanólico/farmacología , Pandemias , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2 , Vitex/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-34870149

RESUMEN

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - coronavirus disease 2019 (COVID-19) has raised a severe global public health issue and creates a pandemic situation. The present work aims to study the molecular -docking and dynamic of three pertinent medicinal plants i.e. Eurycoma harmandiana, Sophora flavescens and Andrographis paniculata phyto-compounds against SARS-COV-2 papain-like protease (PLpro) and main protease (Mpro)/3-chymotrypsin-like protease (3CLpro). The interaction of protein targets and ligands was performed through AutoDock-Vina visualized using PyMOL and BIOVIA-Discovery Studio 2020. Molecular docking with canthin-6-one 9-O-beta-glucopyranoside showed highest binding affinity and less binding energy with both PLpro and Mpro/3CLpro proteases and was subjected to molecular dynamic (MD) simulations for a period of 100ns. Stability of the protein-ligand complexes was evaluated by different analyses. The binding free energy calculated using MM-PBSA and the results showed that the molecule must have stable interactions with the protein binding site. ADMET analysis of the compounds suggested that it is having drug-like properties like high gastrointestinal (GI) absorption, no blood-brain barrier permeability and high lipophilicity. The outcome revealed that canthin-6-one 9-O-beta-glucopyranoside can be used as a potential natural drug against COVID-19 protease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA