RESUMEN
The Portezuelo Formation preserves an outstanding record of the upper Turonian - lower Coniacian. Despite the discovery of a significant quantity of sauropod fossil material from the formation, only two species have been formally described to date: Malarguesaurus florenciae and Futalognkosaurus dukei. Here we present new sauropod material mostly composed of non-articulated caudal vertebrae (MCF-PVPH 916 and 917) that belong to two titanosauriforms on the basis of the following features: anterior caudal vertebrae with procoelous-opisthoplatyan articulations, transverse processes that reach the posterior articular face of the centrum and neural spines with a transverse width of around 50% of their anteroposterior length; anterior and middle caudal vertebrae with the neural arch restricted to the anterior half of the centrum; middle caudal centra with circular cross-section. Phylogenetic analysis recovers the new material in close relation to Malarguesaurus within a monophyletic clade at the base of Somphospondyli. This clade shares large pedicel height with a vertical anterior border on the middle caudal vertebrae, a vertical orientation of the neural spines on the distalmost middle caudal vertebrae and proximalmost posterior caudal vertebrae, and subequal relative lengths of the proximal ulnar condylar processes. The specimens presented here are distinct not only from Futalognkosaurus, but also from other indeterminate titanosaurian remains from the same formation. However, there are no significant differences between the specimen MCF-PVPH 917 and Malarguesaurus, but there are differences between the posterior caudal vertebrae of MCF-PVPH 916 and Malarguesaurus, so they could be considered different species. Whilst we err on the side of caution in not naming new taxa here, the two specimens significantly expand what we know about sauropods in the Turonian-Coniacian ecosystems of Patagonia, which will continue to do so as more material is discovered.
Asunto(s)
Dinosaurios , Fósiles , Filogenia , Animales , Dinosaurios/anatomía & histología , Argentina , Columna Vertebral/anatomía & histología , BiodiversidadRESUMEN
The study of thirty-two shed crowns from the Portezuelo Formation (middle Turonian-late Coniacian) at the Sierra del Portezuelo locality, reveals six distinct tooth morphotypes identified through cladistic, discriminant, and cluster analyses. Two morphotypes were identified as belonging to Megaraptoridae, three to Abelisauridae, one to Abelisauroidea, and one to Alvarezsauridae. Additionally, two of the morphotypes exhibit a combination of dental features typically found in megaraptorid and abelisauridtheropods. These results suggest a greater diversity of theropods in the original ecosystem than previously thought, including the presence of a second morphotype of megaraptorid and alvarezsaurid previously undocumented in this formation. Furthermore, the existence of Morphotype 6 indicates the potential coexistence of medium-sized abelisauroids alongside larger abelisaurids in the same ecosystem. These findings underscore the importance of future expeditions to the Sierra del Portezuelo locality to further our understanding of these previously unknown theropod species.
Asunto(s)
Fósiles , Diente , Animales , Diente/anatomía & histología , Biodiversidad , Argentina , FilogeniaRESUMEN
In the dusk of the Mesozoic, advanced duck-billed dinosaurs (Hadrosauridae) were so successful that they likely outcompeted other herbivores, contributing to declines in dinosaur diversity. From Laurasia, hadrosaurids dispersed widely, colonizing Africa, South America, and, allegedly, Antarctica. Here, we present the first species of a duck-billed dinosaur from a subantarctic region, Gonkoken nanoi, of early Maastrichtian age in Magallanes, Chile. Unlike duckbills further north in Patagonia, Gonkoken descends from North American forms diverging shortly before the origin of Hadrosauridae. However, at the time, non-hadrosaurids in North America had become replaced by hadrosaurids. We propose that the ancestors of Gonkoken arrived earlier in South America and reached further south, into regions where hadrosaurids never arrived: All alleged subantarctic and Antarctic remains of hadrosaurids could belong to non-hadrosaurid duckbills like Gonkoken. Dinosaur faunas of the world underwent qualitatively different changes before the Cretaceous-Paleogene asteroid impact, which should be considered when discussing their possible vulnerability.
Asunto(s)
Dinosaurios , Animales , Dinosaurios/anatomía & histología , Fósiles , Patos , Chile , América del NorteRESUMEN
Armoured dinosaurs are well known for their evolution of specialized tail weapons-paired tail spikes in stegosaurs and heavy tail clubs in advanced ankylosaurs1. Armoured dinosaurs from southern Gondwana are rare and enigmatic, but probably include the earliest branches of Ankylosauria2-4. Here we describe a mostly complete, semi-articulated skeleton of a small (approximately 2 m) armoured dinosaur from the late Cretaceous period of Magallanes in southernmost Chile, a region that is biogeographically related to West Antarctica5. Stegouros elengassen gen. et sp. nov. evolved a large tail weapon unlike any dinosaur: a flat, frond-like structure formed by seven pairs of laterally projecting osteoderms encasing the distal half of the tail. Stegouros shows ankylosaurian cranial characters, but a largely ancestral postcranial skeleton, with some stegosaur-like characters. Phylogenetic analyses placed Stegouros in Ankylosauria; specifically, it is related to Kunbarrasaurus from Australia6 and Antarctopelta from Antarctica7, forming a clade of Gondwanan ankylosaurs that split earliest from all other ankylosaurs. The large osteoderms and specialized tail vertebrae in Antarctopelta suggest that it had a tail weapon similar to Stegouros. We propose a new clade, the Parankylosauria, to include the first ancestor of Stegouros-but not Ankylosaurus-and all descendants of that ancestor.
Asunto(s)
Agresión , Dinosaurios/anatomía & histología , Dinosaurios/fisiología , Fósiles , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/fisiología , Animales , Regiones Antárticas , Chile , Conducta Predatoria , EsqueletoRESUMEN
In the last decades, several discoveries have uncovered the complexity of mammalian evolution during the Mesozoic Era, including important Gondwanan lineages: the australosphenidans, gondwanatherians, and meridiolestidans (Dryolestoidea). Most often, their presence and diversity is documented by isolated teeth and jaws. Here, we describe a new meridiolestidan mammal, Orretherium tzen gen. et sp. nov., from the Late Cretaceous of southern Chile, based on a partial jaw with five cheek teeth in locis and an isolated upper premolar. Phylogenetic analysis places Orretherium as the earliest divergence within Mesungulatidae, before other forms such as the Late Cretaceous Mesungulatum and Coloniatherium, and the early Paleocene Peligrotherium. The in loco tooth sequence (last two premolars and three molars) is the first recovered for a Cretaceous taxon in this family and suggests that reconstructed tooth sequences for other Mesozoic mesungulatids may include more than one species. Tooth eruption and replacement show that molar eruption in mesungulatids is heterochronically delayed with regard to basal dryolestoids, with therian-like simultaneous eruption of the last premolar and last molar. Meridiolestidans seem endemic to Patagonia, but given their diversity and abundance, and the similarity of vertebrate faunas in other regions of Gondwana, they may yet be discovered in other continents.