Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 92(1): 013903, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33514245

RESUMEN

Resistive heating of a sample in a diamond anvil cell (DAC) can generate a homogeneous temperature field across the sample chamber with reliable temperatures measured by a thermocouple. It is of importance in experiments aiming at exploring phase diagrams and quantifying thermoelastic properties of materials. Here, we present a ring-heater design developed for BX90 diamond anvil cells (DACs). It is made of a ring-shaped aluminum oxide holder hosting a tungsten wire coil inside and coupled with Ar + 2% H2 gas to prevent oxidation during experiment. This modular plug-and-play design enables in situ studies of samples via x-ray diffraction up to a temperature of 1700 K. Temperature in the BX90 sample volume as measured through a thermocouple was calibrated using the melting point of gold. As an application of this design, we report the thermal expansion coefficient of MgO at 9.5(1) GPa.

2.
J Chem Phys ; 139(8): 084507, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-24007018

RESUMEN

The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the ß-Sn crystal structure near ~5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → ß-Sn phase transition is found to be hysteretically reversible as the ß-Sn phase undergoes decompressive amorphization near ~2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

3.
J Chem Phys ; 137(22): 224503, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23249013

RESUMEN

Pressure induced densification in a molecular arsenic sulfide glass is studied at ambient temperature using x-ray scattering, absorption and Raman spectroscopic techniques in situ in a diamond anvil cell. The relatively abrupt changes in the position of the first sharp diffraction peak, FSDP, and the pressure-volume equation of state near ∼2 GPa suggest a phase transition between low- and high-density amorphous phases characterized by different densification mechanisms and rates. Raman spectroscopic results provide clear evidence that the phase transition corresponds to a topological transformation between a low-density molecular structure and a high-density network structure via opening of the constituent As(4)S(3) cage molecules and bond switching. Pressure induced mode softening of the high density phase suggests a low dimensional nature of the network. The phase transformation is hysteretically reversible, and therefore, reminiscent of a first-order phase transition.

4.
J Phys Condens Matter ; 24(34): 345401, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22850355

RESUMEN

The compressibility and phase stability of Y bB(2) are investigated under high pressure using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The bulk modules of high purity Y bB(2) is obtained as ∼182 GPa using the Birch-Murnaghan equation of state. The patterns measured up to 20 GPa and the pressure dependence of normalized lattice parameters, a/a(0) and c/c(0), reveal that the compressibility of Y bB(2) is low and fairly isotropic, and this material can be classified as a hard material. X-ray photoemission studies demonstrate that Yb in Y bB(2) has a mostly trivalent valence state at room temperature. Moreover, sample preparation details provide a new insight into the high purity synthesis of Y bB(2) at ambient pressure and moderate temperatures. The presented structural and compressibility results are in agreement with the available theoretical and experimental data on binary rare-earth borides and can serve as a reliable reference for future studies.

5.
J Chem Phys ; 135(12): 124510, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21974538

RESUMEN

The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA