Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 17208, 2024 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060430

RESUMEN

We analyzed the effects of foliar spraying with amino acids, chitosan (CHS) and nanocomposites (NCs) of chitosan with the amino acids proline, L-cysteine and glycine betaine (CHS-Pro NCs; CHS-Cys NCs, CHS-GB NCs, respectively) on the changes in the physiological and biochemical parameters of iceberg lettuce grown at the control temperature (20 °C) and under chilling conditions (4 °C). The physicochemical parameters of the phospholipid monolayers (PLs) extracted from plants showed the effects of the treatments on the properties of the monolayers, namely, the packing density and flexibility. We observed increased accumulation of proline at 4 °C, and differences in the concentrations of sugars in most of the analyzed variants were a consequence of the lowered temperature and/or the use of organic compounds. A temperature of 4 °C caused a significant increase in the L-ascorbic acid level compared with that at 20 °C. Differences were also found in glutathione (GSH) content depending on the temperature and treatment with the tested organic compounds. CHS NCs loaded with Pro and GB were effective at increasing the amount of phenols under stress temperature conditions. We noted that a significant increase in the antioxidant activity of plants at 4 °C occurred after priming with Cys, CHS-Cys NCs, Pro and CHS-Pro NCs, and the CHS nanocomposites were more effective in this respect. Both low-temperature stress and foliar spraying of lettuce with various organic compounds caused changes in the activity of antioxidant enzymes. Two forms of dismutase (SOD), iron superoxide dismutase (FeSOD) and copper/zinc superoxide dismutase (Cu/ZnSOD), were identified in extracts from the leaves of iceberg lettuce seedlings. The application of the tested organic compounds, alone or in combination with CHS, increased the amount of malondialdehyde (MDA) in plants grown under controlled temperature conditions. Chilling caused an increase in the content of MDA, but some organic compounds mitigated the impact of low temperature. Compared with that of plants subjected to 20 °C, the fresh weight of plants exposed to chilling decreased. However, the tested compounds caused a decrease in fresh weight at 4 °C compared with the corresponding control samples. An interesting exception was the use of Cys, for which the difference in the fresh weight of plants grown at 20 °C and 4 °C was not statistically significant. After Cys application, the dry weight of the chilled plants was greater than that of the chilled control plants but was also greater than that of the other treated plants in this group. To our knowledge, this is the first report demonstrating that engineered chitosan-amino acid nanocomposites could be applied as innovative protective agents to mitigate the effects of chilling stress in crop plants.


Asunto(s)
Aminoácidos , Quitosano , Lactuca , Nanocompuestos , Lactuca/efectos de los fármacos , Lactuca/metabolismo , Lactuca/crecimiento & desarrollo , Nanocompuestos/química , Quitosano/química , Aminoácidos/metabolismo , Aminoácidos/química , Estrés Fisiológico/efectos de los fármacos , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Temperatura , Antioxidantes/metabolismo , Cisteína/metabolismo , Cisteína/química , Prolina/metabolismo , Glutatión/metabolismo
2.
Front Plant Sci ; 14: 1222557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521928

RESUMEN

Introduction: Smart management in crop cultivation is increasingly supported by application of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting microorganisms (PGPM), which sustain soil fertility and plant performance. The aim of this study was the evaluation of the effects of consortia composed of (Claroideoglomus claroideum BEG96, Claroideoglomus etunicatum BEG92, Funneliformis geosporum BEG199, Funneliformis mosseae BEG 95, and Rhizophagus irregularis BEG140) and PGPM (Azospirillum brasilense - AZ, or Saccharothrix sp. - S) on onion cultivated in growing media with a composition corresponding to a degraded soil. Methods: Three types of substrate formulations were used, with peat:sand ratios of 50:50, 70:30, 100:0 (v:v). The analysis of substrate parameters crucial for its fertility (pH, salinity, sorption complex capacity, and elements' content) and characteristics reflecting onion seedlings' performance (fresh weight, stress biomarkers, and elements' content) was performed. Results: AMF colonized onion roots in all treatments, showing increasing potential to form intercellular structures in the substrates rich in organic matter. Additionally, co-inoculation with PGPM microorganisms accelerated arbuscular mycorrhiza establishment. Increased antioxidant activity and glutathione peroxidase (GPOX) activity of onion roots sampled from the formulations composed of peat and sand in the ratio of 100:0, inoculated with AMF+S, and positive correlation between GPOX, fresh weight and antioxidant activity of onion roots reflected the successful induction of plant acclimatization response. Total phenols content was the highest in roots and leaves of onion grown in substrates with 70:30 peat:sand ratio, and, in the case of roots, it was correlated with AMF colonization parameters but not with antioxidant activity. Discussion: AMF and PGPM efficiency in supporting onion growth should be linked to the increased onion root system capacity in mineral salts absorption, resulting in more efficient aboveground biomass production. AMF and PGPM consortia were effective in releasing minerals to soluble fraction in substrates rich in organic matter, making elements available for uptake by onion root system, though this phenomenon depended on the PGPM species. Microorganism consortia enhanced onion seedlings' performance also in substrates with lower content of organic carbon through plant biofertilization and phytostimulation.

3.
BMC Plant Biol ; 23(1): 329, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37340375

RESUMEN

BACKGROUND: Most nanoparticles (NPs) have a significant impact on the structure and function of the plant photosynthetic apparatus. However, their spectrum of action varies significantly, from beneficial stimulation to toxicity, depending on the type of NPs, the concentration used and plant genotypic diversity. Photosynthetic performance can be assessed through chlorophyll a fluorescence (ChlF) measurements. These data allow to indirectly obtain detailed information about primary light reactions, thylakoid electron transport reactions, dark enzymatic stroma reactions, slow regulatory processes, processes at the pigment level. It makes possible, together with leaf reflectance performance, to evaluate photosynthesis sensitivity to stress stimuli. RESULTS: We investigated effects of different metal and metal(oid) oxide nanoparticles on photosynthesis of oakleaf lettuce seedlings by monitoring the chlorophyll a fluorescence light radiation and reflectance from the leaves. Observations of ChlF parameters and changes in leaf morphology were carried out for 9 days in two-day intervals. Spectrophotometric studies were performed at 9th day. Suspensions of NPs with the following concentrations were used: 6% TiO2, SiO2; 3% CeO2, SnO2, Fe2O3; 0.004% (40 ppm) Ag; 0.002% (20 ppm) Au. Nanoparticles were applied directly on the leaves which caused small symptoms of chlorosis, necrosis and leaf veins deformation, but the plants fully recovered to the initial morphological state at 9th day. Leaf reflectance analysis showed an increase in FRI for SiO2-NPs and CeO2-NPs treatments and ARI2 for Fe2O3, however, WBI and PRI coefficients for the latter nanoparticle were lower than in control. Chlorophyll a fluorescence parameters have changed due to NPs treatment. Fe2O3-NPs caused an increase in Fv/F0, PIABS, ET0/RC, DI0/RC, ABS/RC in different time points in comparison to control, also Ag, Au and SnO2 treatment caused an increase in Fv/F0, PIABS or ET0/RC, respectively. On the other hand, TiO2-NPs caused a decrease in Fv/Fm and Fv/F0 parameters, but an increase in DI0/RC value was observed. SnO2-NPs decreased PIABS, but increased ET0/RC than compared to control. Nanoparticles affected the shape of the O-J-I-P curve in slight manner, however, further analyses showed unfavourable changes within the PSII antenna, manifested by a slowdown in the transport of electrons between the Chl molecules of the light-harvesting complex II and the active center of PSII due to NPs application. CONCLUSION: Changes in ChlF parameters and leaf reflectance values clearly proved the significant influence of NPs on the functioning of the photosynthetic apparatus, especially right after NPs application. The nature of these changes was strictly depended on the type of nanoparticles and sometimes underwent very significant changes over time. The greatest changes in ChlF parameters were caused by Fe2O3 nanoparticles, followed by TiO2-NPs. After slight response of O-J-I-P curves to treatment of the plants with NPs the course of the light phase of photosynthesis stabilized and at 9th day were comparable to the control curve.


Asunto(s)
Clorofila , Nanopartículas , Clorofila A , Lactuca , Óxidos/farmacología , Fluorescencia , Dióxido de Silicio/farmacología , Complejo de Proteína del Fotosistema II , Hojas de la Planta/fisiología
4.
PLoS One ; 16(11): e0259380, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34731216

RESUMEN

Plant growth-promoting microbes (PGPM) play vital roles in maintaining crop fitness and soil health in stressed environments. Research have included analysis-based cultivation of soil-microbial-plant relationships to clarify microbiota potential. The goal of the research was to (i) evaluate the symbiotic microorganism effects on tomato seedling fitness under stressed conditions simulating a fragile soil susceptible to degradation; (ii) compare the plant-microbial interactions after inoculation with microbial isolates and fungi-bacteria consortia; (iii) develop an effective crop-microbial network, which improves soil and plant status. The experimental design included non-inoculated treatments with peat and sand at ratios of 50:50, 70:30, 100:0 (v:v), inoculated treatments with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ) using the aforementioned peat:sand ratios; and treatment with peat co-inoculated with AMF and Saccharothrix tamanrassetensis (S). AMF + AZ increased root fresh weight in peat substrate compared to the control (4.4 to 3.3 g plant-1). An increase in shoot fresh weight was detected in the AMF + AZ treatment with a 50:50 peat:sand ratio (10.1 to 8.5 g plant-1). AMF + AZ reduced antioxidant activity (DPPH) (18-34%) in leaves, whereas AMF + S had the highest DPPH in leaves and roots (45%). Total leaf phenolic content was higher in control with a decreased proportion of peat. Peroxidase activity was enhanced in AMF + AZ and AMF + S treatments, except for AMF + AZ in peat. Microscopic root assays revealed the ability of AMF to establish strong fungal-tomato symbiosis; the colonization rate was 78-89%. AMF + AZ accelerated K and Mg accumulation in tomato leaves in treatments reflecting soil stress. To date, there has been no relevant information regarding the successful AMF and Saccharothrix co-inoculation relationship. This study confirmed that AMF + S could increase the P, S, and Fe status of seedlings under high organic C content conditions. The improved tomato growth and nutrient acquisition demonstrated the potential of PGPM colonization under degraded soil conditions.


Asunto(s)
Azospirillum brasilense/fisiología , Medios de Cultivo Condicionados/química , Micorrizas/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/química , Solanum lycopersicum/microbiología , Magnesio/química , Peroxidasa/metabolismo , Fenol/análisis , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Potasio/química , Plantones/crecimiento & desarrollo , Simbiosis
5.
Molecules ; 26(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34279430

RESUMEN

High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs-Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L-1) and Cs-Se NPs (0, 10 and 20 mg L-1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L-1) and Cs-Se NPs (20 mg L-1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L-1) and Cs-Se NPs (20 mg L-1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L-1 TiO2 NPs and 20 mg L-1 Cs-Se could be considered as promising agents in combating high levels of salinity in the case of stevia.


Asunto(s)
Quitosano/química , Nanopartículas/administración & dosificación , Hojas de la Planta/crecimiento & desarrollo , Estrés Salino/efectos de los fármacos , Selenio/administración & dosificación , Stevia/crecimiento & desarrollo , Titanio/administración & dosificación , Nanopartículas/química , Fotosíntesis , Selenio/química , Stevia/efectos de los fármacos , Titanio/química
6.
Nanomaterials (Basel) ; 11(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33947078

RESUMEN

Nowadays, there is an increasing interest in nanoparticle (NP) technology used in household and industrial products. It could cause an accumulation and dispersion of NPs in the environment, with possible harmful effects on living organisms. Nanoparticles significantly affect plants and alter their physiology and biochemical pathways, and nanotechnology can be used to improve plant characteristics that are desirable by humans. Therefore, more extensive studies of NP interactions with plants are still needed. The aim of this report is to investigate the effect of TiO2 nanoparticles (TiO2-NPs) on the enzymatic and non-enzymatic antioxidants, fresh and dry weights, and malondialdehyde contents in oakleaf lettuce seedlings. Plants were foliar treated with a 0.75% suspension of TiO2-NPs, while control plants were sprayed with deionized water. Leaves were sampled 4, 7, 9, 11, and 13 days after the treatment. The effects of TiO2-NPs were time-dependent, but the most spectacular changes were observed 4 days after the treatment. Exposure of the plants to TiO2-NPs significantly increased the contents of glutathione at all sampling points, total phenolics at days 4 and 13, and L-ascorbic acid at 4, 7, and 11 days after the treatment. Elevated levels of ascorbate peroxidase and guaiacol peroxidase activities were recorded at days 4 and 13, respectively. Total antioxidant capacity increased initially in treated seedlings, when compared with the control, and then decreased. On day 7, higher fresh and dry weights, as well as malondialdehyde contents in TiO2-NPs treated plants were observed, compared with the control. The study demonstrated that the activation of some antioxidant system components due to TiO2-NPs treatment was connected with the induction of mild oxidative stress, with no external symptoms of NP toxicity in oakleaf lettuce.

7.
BMC Plant Biol ; 20(1): 290, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576147

RESUMEN

BACKGROUND: Nanoparticles (NPs) serve various industrial and household purposes, and their increasing use creates an environmental hazard because of their uncontrolled release into ecosystems. An important aspect of the risk assessment of NPs is to understand their interactions with plants. The aim of this study was to examine the effect of Au (10 and 20 ppm), Ag, and Pt (20 and 40 ppm) NPs on oakleaf lettuce, with particular emphasis on plant antioxidative mechanisms. Nanoparticles were applied once on the leaves of 2-week-old lettuce seedlings, after next week laboratory analyses were performed. RESULTS: The antioxidant potential of oakleaf lettuce seedlings sprayed with metal NPs at different concentrations was investigated. Chlorophylls, fresh and dry weight were also determined. Foliar exposure of the seedlings to metal NPs did not affect ascorbate peroxidase activity, total peroxidase activity increased after Au-NPs treatment, but decreased after applying Ag-NPs and Pt-NPs. Both concentrations of Au-NPs and Pt-NPs tested caused an increase in glutathione (GSH) content, while no NPs affected L-ascorbic acid content in the plants. Ag-NPs and Pt-NPs applied as 40 ppm solution increased total phenolics content by 17 and 15%, respectively, compared to the control. Carotenoids content increased when Ag-NPs and Au-NPs (20 and 40 ppm) and Pt-NPs (20 ppm) were applied. Plants treated with 40 ppm of Ag-NPs and Pt-NPs showed significantly higher total antioxidant capacity and higher concentration of chlorophyll a (only for Ag-NPs) than control. Pt-NPs applied as 40 ppm increased fresh weight and total dry weight of lettuce shoot. CONCLUSIONS: Results showed that the concentrations of NPs applied and various types of metal NPs had varying impact on the antioxidant status of oakleaf lettuce. Alteration of POX activity and in biosynthesis of glutathione, total phenolics, and carotenoids due to metal NPs showed that tested nanoparticles can act as stress stimuli. However, judging by the slight changes in chlorophyll concentrations and in the fresh and dry weight of the plants, and even based on the some increases in these traits after M-NPs treatment, the stress intensity was relatively low, and the plants were able to cope with its negative effects.


Asunto(s)
Antioxidantes/metabolismo , Lactuca/efectos de los fármacos , Nanopartículas del Metal , Hojas de la Planta/efectos de los fármacos , Plantones/efectos de los fármacos , Lactuca/metabolismo , Hojas de la Planta/metabolismo
8.
Molecules ; 24(22)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726737

RESUMEN

Chilling influences the growth and metabolism of plants. The physiological response and acclimatization of genotypes in relation to stress stimulus can be different. Two sage cultivars: 'Icterina' and 'Purpurascens' were subjected to 4 °C and 18 °C (control), and sampled between the 5th and 14th day of the treatment. Ascorbate peroxidase (APX) activity was up-regulated in chilled 'Purpurascens' on the 14th day, while guaiacol peroxidase (GPX) activity increased on the 10th and 12th day in relation to the control. GPX activity of the control 'Icterina' was frequently higher than chilled plants, and chilling did not affect APX activity of that cultivar. Catalase activity remained stable in both sage cultivars. Chilled 'Purpurascens' showed a significant increase in total phenolics contents on the 5th, 7th, and 12th day and in total antioxidant capacity on the 5th and 10th day as compared to the control for respective sampling days. Higher malondialdehyde content was found in chilled plants on the 12th, or 14th day, differences reached 26-28% of the controls. Chilling caused significant decrease in dry matter content. The stress response was more stable and effective in 'Icterina', while more dynamic changes were found for 'Purpurascens'. Based on our results, we propose to use 'Purpurascens' for targeted stress-induced studies and 'Icterina' for field applications.


Asunto(s)
Antioxidantes/metabolismo , Frío , Respuesta al Choque por Frío/genética , Metabolismo Energético , Fenómenos Fisiológicos de las Plantas , Salvia officinalis/fisiología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
9.
Sci Rep ; 9(1): 5416, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30931992

RESUMEN

This study investigated if genetic diversity among cauliflower cultivars (white 'Xenia' F1, green 'Vitaverde' F1, purple 'Graffiti' F1, orange 'Sunset' F1, romanesco 'Celio' F1) and transplant chilling are reflected in the content of 17 elements in mature curds. Transplants at 40 days after sowing were exposed to 4 °C (chilling) and 18 °C (control) for 7 days and then planted in the field till harvest maturity. The lowest Ag, Al, Co, and Li contents were found in 'Celio' F1 cauliflower, which also had the highest Ba and Sr levels. Orange curds of 'Sunset' F1 were the richest in Al, and high in Li, Sc, and Sn. Chilling applied to the transplants increased Ag, Ba, Co, Sc, Sr, and Tb, and decreased the Y content of mature curds. Transplant chilling can permanently alter plant metabolism, and subsequently may affect the mineral composition of the curds.


Asunto(s)
Brassica/química , Frío , Elementos Químicos , Metales de Tierras Raras/análisis , Encuestas y Cuestionarios/estadística & datos numéricos , Brassica/clasificación , Brassica/genética , Variación Genética , Metales de Tierras Raras/metabolismo , Minerales/análisis , Minerales/metabolismo , Especificidad de la Especie
10.
J Plant Physiol ; 169(12): 1158-64, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22762792

RESUMEN

Differences in the activity of superoxide dismutase, catalase (CAT) and ascorbate peroxidase (APX) as well as in the concentration of ascorbate, tocopherol and hydrogen peroxide (H2O2) were found in leaves from different layers of the Chinese cabbage (Brassica pekinensis (Lour.) Rupr.) head. The youngest chlorophyll-deficient leaves from the most inner layers of the cabbage head were characterized by a high concentration of ascorbate, high activity of iron superoxide dismutase (FeSOD), cooper/zinc superoxide dismutase (Cu/ZnSOD) and a low content of H2O2. On the other hand, activity of CAT, manganese superoxide dismutase (MnSOD) and APX and tocopherol content were highest in chlorophyll-rich leaves from outer parts. The results of this work are interesting from the human nutrition standpoint, as the measured antioxidants have beneficial effects on human health. They can also be utilized to improve storage conditions due to an unequivocal function of antioxidant molecules in maintaining postharvest quality of vegetables.


Asunto(s)
Antioxidantes/química , Antioxidantes/metabolismo , Brassica/química , Brassica/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Factores de Edad , Ascorbato Peroxidasas/metabolismo , Ácido Ascórbico/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Hojas de la Planta/química , Superóxido Dismutasa/metabolismo , Tocoferoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA