Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(30): 11856-11864, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092095

RESUMEN

In extended solid-state materials, the manipulation of chemical bonds through redox reactions often leads to the emergence of interesting properties, such as unconventional superconductivity, which can be achieved by adjusting the Fermi level through, e.g., intercalation and pressure. Here, we demonstrate that the internal 'biaxial strain' in tri-layered fluorite oxychloride photocatalysts can regulate bond formation and cleavage without redox processes. We achieve this by synthesizing the isovalent solid solution Bi2-x Sb x YO4Cl, which undergoes a structural phase transition from the ideal Bi2YO4Cl structure to the Sb2YO4Cl structure with (Bi,Sb)4O8 rings. Initially, substitution of smaller Sb induces expected lattice contraction, but further substitution beyond x > 0.6 triggers an unusual lattice expansion before the phase transition at x = 1.5. Detailed analysis reveals structural instability at high x values, characterized by Sb-O underbonding, which is attributed to tensile strain exerted from the inner Y sublayer to the outer (Bi,Sb)O sublayer within the triple fluorite block - a concept well-recognized in thin film studies. This concept also explains the formation of zigzag Bi-O chains in Bi2MO4Cl (M = Bi, La). The Sb substitution in Bi2-x Sb x YO4Cl elevates the valence band maximum, resulting in a minimized bandgap of 2.1 eV around x = 0.6, which is significantly smaller than those typically observed in oxychlorides, allowing the absorption of a wider range of light wavelengths. Given the predominance of materials with a double fluorite layer in previous studies, our findings highlight the potential of compounds endowed with triple or thicker fluorite layers as a novel platform for band engineering that utilizes biaxial strain from the inner layer(s) to finely control their electronic structures.

2.
J Am Chem Soc ; 143(6): 2491-2499, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33417448

RESUMEN

The discovery of building blocks offers new opportunities to develop and control properties of extended solids. Compounds with fluorite-type Bi2O2 blocks host various properties including lead-free ferroelectrics and photocatalysts. In this study, we show that triple-layered Bi2MO4 blocks (M = Bi, La, Y) in Bi2MO4Cl allow, unlike double-layered Bi2O2 blocks, to extensively control the conduction band. Depending on M, the Bi2MO4 block is truncated by Bi-O bond breaking, resulting in a series of n-zigzag chain structures (n = 1, 2, ∞ for M = Bi, La, Y, respectively). Thus, formed chain structures are responsible for the variation in the conduction band minimum (-0.36 to -0.94 V vs SHE), which is correlated to the presence or absence of mirror symmetry at Bi. Bi2YO4Cl shows higher photoconductivity than the most efficient Bi2O2-based photocatalyst with promising visible-light photocatalytic activity for water splitting. This study expands the possibilities of thickening (2D to 3D) and cutting (2D to 1D) fluorite-based blocks toward desired photocatalysis and other functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA