Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Breed Sci ; 73(5): 421-434, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38737918

RESUMEN

Fusarium wilt is a significant disease in radish, but the genetic mechanisms controlling yellows resistance (YR) are not well understood. This study aimed to identify YR-QTLs and to fine-map one of them using F2:3 populations developed from resistant and susceptible radish parents. In this study, two high-density genetic maps each containing shared co-dominant markers and either female or male dominant markers that spanned 988.6 and 1127.5 cM with average marker densities of 1.40 and 1.53 cM, respectively, were generated using Genotyping by Random Amplicon Sequencing-Direct (GRAS-Di) technology. We identified two YR-QTLs on chromosome R2 and R7, and designated the latter as ForRs1 as the major QTL. Fine mapping narrowed down the ForRs1 locus to a 195 kb region. Among the 16 predicted genes in the delimited region, 4 genes including two receptor-like protein and -kinase genes (RLP/RLK) were identified as prime candidates for ForRs1 based on the nucleotide sequence comparisons between the parents and their predicted functions. This study is the first to use a GRAS-Di for genetic map construction of cruciferous crops and fine map the YR-QTL on the R7 chromosome of radish. These findings will provide groundbreaking insights into radish YR breeding and understanding the genetics of YR mechanism.

2.
Plants (Basel) ; 10(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072246

RESUMEN

In vegetables of Brassica rapa L., Fusarium oxysporum f. sp. rapae (For) or F. oxysporum f. sp. conglutinans (Foc) cause Fusarium yellows. A resistance gene against Foc (FocBr1) has been identified, and deletion of this gene results in susceptibility (focbr1-1). In contrast, a resistance gene against For has not been identified. Inoculation tests showed that lines resistant to Foc were also resistant to For, and lines susceptible to Foc were susceptible to For. However, prediction of disease resistance by a dominant DNA marker on FocBr1 (Bra012688m) was not associated with disease resistance of For in some komatsuna lines using an inoculation test. QTL-seq using four F2 populations derived from For susceptible and resistant lines showed one causative locus on chromosome A03, which covers FocBr1. Comparison of the amino acid sequence of FocBr1 between susceptible and resistant alleles (FocBr1 and FocBo1) showed that six amino acid differences were specific to susceptible lines. The presence and absence of FocBr1 is consistent with For resistance in F2 populations. These results indicate that FocBr1 is essential for For resistance, and changed amino acid sequences result in susceptibility to For. This susceptible allele is termed focbr1-2, and a new DNA marker (focbr1-2m) for detection of the focbr1-2 allele was developed.

3.
Breed Sci ; 68(3): 375-380, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30100805

RESUMEN

The genome-wide characterization of single nucleotide polymorphism (SNP) between cultivars or between inbred lines contributes to the creation of genetic markers that are important for plant breeding. Functional markers derived from polymorphisms within genes that affect phenotypic variation are especially valuable in plant breeding. Here, we report on the genome re-sequencing and analysis of the two parental inbred lines of the commercial F1 hybrid Chinese cabbage cultivar "W77". Through the genome-wide identification and classification of the SNPs and indels present in each parental line, we identified about 1,500 putative non-functional genes in each parent. We designed cleaved amplified polymorphic sequence (CAPS) markers using specific mutations found at Eco RI restriction sites in the parental lines and confirmed their Mendelian segregation by constructing a linkage map using 96 F2 plants derived from the F1 hybrid cultivar, "W77". Our results and data will be a useful genomic resource for future studies of gene function and metagenomic studies in Chinese cabbage.

4.
Plant Cell Rep ; 36(12): 1841-1854, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28819684

RESUMEN

KEY MESSAGE: Resistant and susceptible lines in Brassica rapa have different immune responses against Fusarium oxysporum inoculation. Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease of Brassicaceae; however, the mechanism of how host plants respond to Foc is still unknown. By comparing with and without Foc inoculation in both resistant and susceptible lines of Chinese cabbage (Brassica rapa var. pekinensis), we identified differentially expressed genes (DEGs) between the bulked inoculated (6, 12, 24, and 72 h after inoculation (HAI)) and non-inoculated samples. Most of the DEGs were up-regulated by Foc inoculation. Quantitative real-time RT-PCR showed that most up-regulated genes increased their expression levels from 24 HAI. An independent transcriptome analysis at 24 and 72 HAI was performed in resistant and susceptible lines. GO analysis using up-regulated genes at 24 HAI indicated that Foc inoculation activated systemic acquired resistance (SAR) in resistant lines and tryptophan biosynthetic process and responses to chitin and ethylene in susceptible lines. By contrast, GO analysis using up-regulated genes at 72 HAI showed the overrepresentation of some categories for the defense response in susceptible lines but not in the resistant lines. We also compared DEGs between B. rapa and Arabidopsis thaliana after F. oxysporum inoculation at the same time point, and identified genes related to defense response that were up-regulated in the resistant lines of Chinese cabbage and A. thaliana. Particular genes that changed expression levels overlapped between the two species, suggesting that they are candidates for genes involved in the resistance mechanisms against F. oxysporum.


Asunto(s)
Brassica rapa/microbiología , Fusarium/fisiología , Transcriptoma/genética , Brassica/efectos de los fármacos , Brassica/genética , Brassica/microbiología , Brassica rapa/efectos de los fármacos , Brassica rapa/genética , Quitina/farmacología , Etilenos/farmacología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
5.
Data Brief ; 6: 229-37, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26862564

RESUMEN

Chinese cabbage (Brassica rapa L. var. pekinensis) is an important vegetable in Asia, and most Japanese commercial cultivars of Chinese cabbage use an F1 hybrid seed production system. Self-incompatibility is successfully used for the production of F1 hybrid seeds in B. rapa vegetables to avoid contamination by non-hybrid seeds, and the strength of self-incompatibility is important for harvesting a highly pure F1 seeds. Prediction of agronomically important traits such as disease resistance based on DNA markers is useful. In this dataset, we identified the S haplotypes by DNA markers and evaluated the strength of self-incompatibility in Chinese cabbage inbred lines. The data described the predicted disease resistance to Fusarium yellows or clubroot in 22 Chinese cabbage inbred lines using gene associated or gene linked DNA markers.

6.
BMC Plant Biol ; 16: 45, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26882898

RESUMEN

BACKGROUND: Heterosis or hybrid vigour is a phenomenon in which hybrid progeny exhibit superior performance compared to their parental inbred lines. Most commercial Chinese cabbage cultivars are F1 hybrids and their level of hybrid vigour is of critical importance and is a key selection criterion in the breeding system. RESULTS: We have characterized the heterotic phenotype of one F1 hybrid cultivar of Chinese cabbage and its parental lines from early- to late-developmental stages of the plants. Hybrid cotyledons are larger than those of the parents at 4 days after sowing and biomass in the hybrid, determined by the fresh weight of leaves, is greater than that of the larger parent line by approximately 20% at 14 days after sowing. The final yield of the hybrid harvested at 63 days after sowing is 25% greater than the yield of the better parent. The larger leaves of the hybrid are a consequence of increased cell size and number of the photosynthetic palisade mesophyll cells and other leaf cells. The accumulation of plant hormones in the F1 was within the range of the parental levels at both 2 and 10 days after sowing. Two days after sowing, the expression levels of chloroplast-targeted genes in the cotyledon cells were upregulated in the F1 hybrid relative to their mid parent values. Shutdown of chlorophyll biosynthesis in the cotyledon by norflurazon prevented the increased leaf area in the F1 hybrid. CONCLUSIONS: In the cotyledons of F1 hybrids, chloroplast-targeted genes were upregulated at 2 days after sowing. The increased activity levels of this group of genes suggested that their differential transcription levels could be important for establishing early heterosis but the increased transcription levels were transient. Inhibition of the photosynthetic process in the cotyledon reduced heterosis in later seedling stages. These observations suggest early developmental events in the germinating seedling of the hybrid may be important for later developmental vigour and yield advantage.


Asunto(s)
Brassica/genética , Productos Agrícolas/genética , Vigor Híbrido , Perfilación de la Expresión Génica , Genes de Plantas , Reguladores del Crecimiento de las Plantas/genética , ARN de Planta
7.
Plant Mol Biol ; 85(3): 247-57, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24668026

RESUMEN

Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans is an important disease of Brassica worldwide. To identify a resistance (R) gene against Fusarium yellows in Chinese cabbage (Brassica rapa var. pekinensis), we analyzed differential expression at the whole genome level between resistant and susceptible inbred lines using RNA sequencing. Four hundred and eighteen genes were significantly differentially expressed, and these were enriched for genes involved in response to stress or stimulus. Seven dominant DNA markers at putative R-genes were identified. Presence and absence of the sequence of the putative R-genes, Bra012688 and Bra012689, correlated with the resistance of six inbred lines and susceptibility of four inbred lines, respectively. In F(2) populations derived from crosses between resistant and susceptible inbred lines, presence of Bra012688 and Bra012689 cosegregated with resistance, suggesting that Bra012688 and Bra012689 are good candidates for fusarium yellows resistance in Chinese cabbage.


Asunto(s)
Brassica rapa/metabolismo , Fusarium/química , Regulación de la Expresión Génica de las Plantas/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Secuencia de Aminoácidos , Brassica rapa/genética , Ligamiento Genético , Predisposición Genética a la Enfermedad , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/microbiología , ARN de Planta/genética , ARN de Planta/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA