Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21260561

RESUMEN

BackgroundMultiple SARS-CoV-2 superspreading events suggest that aerosols play an important role in driving the COVID-19 pandemic. However, the detailed roles of coarse (>5m) and fine ([≤]5m) respiratory aerosols produced when breathing, talking, and singing are not well-understood. MethodsUsing a G-II exhaled breath collector, we measured viral RNA in coarse and fine respiratory aerosols emitted by COVID-19 patients during 30 minutes of breathing, 15 minutes of talking, and 15 minutes of singing. ResultsAmong the 22 study participants, 13 (59%) emitted detectable levels of SARS-CoV-2 RNA in respiratory aerosols, including 3 asymptomatic patients and 1 presymptomatic patient. Viral loads ranged from 63-5,821 N gene copies per expiratory activity per patient. Patients earlier in illness were more likely to emit detectable RNA, and loads differed significantly between breathing, talking, and singing. The largest proportion of SARS-CoV-2 RNA copies was emitted by singing (53%), followed by talking (41%) and breathing (6%). Overall, fine aerosols constituted 85% of the viral load detected in our study. Virus cultures were negative. ConclusionsFine aerosols produced by talking and singing contain more SARS-CoV-2 copies than coarse aerosols and may play a significant role in the transmission of SARS-CoV-2. Exposure to fine aerosols should be mitigated, especially in indoor environments where airborne transmission of SARS-CoV-2 is likely to occur. Isolating viable SARS-CoV-2 from respiratory aerosol samples remains challenging, and whether this can be more easily accomplished for emerging SARS-CoV-2 variants is an important enquiry for future studies. Key PointsWe sampled respiratory aerosols emitted by COVID-19 patients and discovered that fine aerosols ([≤]5m) generated during talking and singing contain more SARS-CoV-2 copies than coarse aerosols (>5m) and may play a significant role in the transmission of SARS-CoV-2.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-162396

RESUMEN

COVID-19, the disease caused by SARS-CoV-2 (1), was declared a pandemic by the World Health Organization (WHO) in March 2020 (2). While awaiting a vaccine, several antivirals are being used to manage the disease with limited success (3, 4). To expand this arsenal, we screened 4 compound libraries: a United States Food and Drug Administration (FDA) approved drug library, an angiotensin converting enzyme-2 (ACE2) targeted compound library, a flavonoid compound library as well as a natural product library. Of the 121 compounds identified with activity against SARS-CoV-2, 7 were shortlisted for validation. We show for the first time that the active form of Vitamin D, calcitriol, exhibits significant potent activity against SARS-CoV-2. This finding paves the way for consideration of host-directed therapies for ring prophylaxis of contacts of SARS-CoV-2 patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA