Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 12(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36673394

RESUMEN

Cucumber fruit is very sensitive to chilling injury, which rapidly depreciates their commodity value. Herein, the effect of fucoidan treatment on cucumber under cold stress were investigated. Fucoidan treatment of cold-stored cucumber alleviated the occurrence of chilling injury, delayed weight loss, lowered electrolyte leakage and respiration rate, and retarded malondialdehyde accumulation. Different from the control fruit, fucoidan treated fruit showed a high level of fatty acid unsaturated content, fatty acid unsaturation, and unsaturation index and increased ω-FDAS activity, along with upregulated expression levels of CsSAD and CsFAD genes. Fucoidan reduced the phosphatidic acid content and membrane lipid peroxidation, lowered the phospholipase D (PLD) and lipoxygenase (LOX) activity, and downregulated the expression levels of CsPLD and CsLOX genes. Collectively, fucoidan treatment maintained the integrity of cell membrane in cold-stress cucumbers. The results provide a new prospect for the development of fucoidan as a preservative agent in the low-temperature postharvest storage of cucumbers.

2.
J Agric Food Chem ; 70(26): 8111-8123, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35730981

RESUMEN

7-Demethoxytylophorine (DEM), a natural water-soluble phenanthroindolizidine alkaloid, has a great potential for in vitro suppression of Penicillium italicum growth. In the present study, we investigated the ability of DEM to confer resistance against P. italicum in harvested "Newhall" navel orange and the underlying mechanism. Results from the in vivo experiment showed that DEM treatment delayed blue mold development. The water-soaked lesion diameter in 40 mg L-1 DEM-treated fruit was 35.2% lower than that in the control after 96 h. Moreover, the decrease in peel firmness loss and increase in electrolyte leakage, superoxide anion (O2•-) production, and malondialdehyde (MDA) content were significantly inhibited by DEM treatment. Hydrogen peroxide (H2O2) burst in DEM-treated fruit at the early stage of P. italicum infection contributed to the conferred resistance by increasing the activities of lignin biosynthesis-related enzymes, along with the expressions of their encoding genes, resulting in lignin accumulation. The DEM-treated fruit maintained an elevated antioxidant capacity, as evidenced by high levels of ascorbic acid and glutathione content, and enhanced or upregulated the activities and gene expression levels of APX, GR, MDHAR, DHAR, GPX, and GST, thereby maintaining ROS homeostasis and reducing postharvest blue mold. Collectively, the results in the present study revealed a control mechanism in which DEM treatment conferred the resistance against P. italicum infection in harvested "Newhall" navel orange fruit by activating lignin biosynthesis and maintaining the redox balance.


Asunto(s)
Citrus sinensis , Penicillium , Peróxido de Hidrógeno , Lignina , Oxidación-Reducción , Agua
3.
Food Chem ; 372: 131239, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34627096

RESUMEN

Pummelo fruit rapidly depreciate in commodity value due to postharvest fungal decay and fruit quality deterioration. Here, we used carvacrol (CVR) to control Phomopsis stem-end rot (SER) caused by Diaporthe citri in pummelo fruit stored at 25 °C. Antifungal activity of CVR inhibited D. citri growth and Phomopsis SER development. Harvested pummelo fruit treated with CVR delayed firmness loss and lowered electrolyte leakage, and retarded hydrogen peroxide (H2O2) and malondialdehyde (MDA) accumulation. Unlike the control fruit, the CVR-treated fruit maintained higher levels of adenosine triphosphate and energy charge, and increased ATPase, succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and cytochrome C oxidase (CCO) activities, along with up-regulated expression levels of the respective genes. CVR improved the antioxidant capacity, as evidenced by higher non-enzymatic antioxidants amounts, higher activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX) and glutathione reductase (GR), and up-regulated expression levels of ROS-scavenging-related genes. Collectively, CVR treatment maintained the energy status and antioxidant capacity in D. citri-infected pummelo fruit, which revealed antifungal mechanisms critical for controlling postharvest fungal diseases.


Asunto(s)
Antioxidantes , Frutas , Ascomicetos , Catalasa , Cimenos , Peróxido de Hidrógeno , Phomopsis
4.
Front Plant Sci ; 13: 1117106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36743559

RESUMEN

Introduction: Apple polyphenols (AP), derived from the peel of mature-green apples, are widely used as natural plant-derived preservatives in the postharvest preservation of numerous horticultural products. Methods: The goal of this research was to investigate how AP (at 0.5% and 1.0%) influences senescence-related physiological parameters and antioxidant capacity of 'Jinshayou' pummelo fruits stored at 20°C for 90 d. Results: The treating pummelo fruit with AP could effectively retard the loss of green color and internal nutritional quality, resulting in higher levels of total soluble solid (TSS) content, titratable acidity (TA) content and pericarp firmness, thus maintaining the overall quality. Concurrently, AP treatment promoted the increases in ascorbic acid, reduced glutathione, total phenols (TP) and total flavonoids (TF) contents, increased the scavenging rates of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and hydroxyl radical (•OH), and enhanced the activities of superoxide dismutase (SOD), catalase, peroxidase, ascorbate peroxidase (APX), and glutathione reductase (GR) as well as their encoding genes expression (CmSOD, CmCAT, CmPOD, CmAPX, and CmGR), reducing the increases in electrolyte leakage, malondialdehyde content and hydrogen peroxide level, resulting in lower fruit decay rate and weight loss rate. The storage quality of 'Jinshayou' pummelo fruit was found to be maintained best with a 1.0% AP concentration. Conclusion: AP treatment can be regarded as a promising and effective preservative of delaying quality deterioration and improving antioxidant capacity of 'Jinshayou' pummelo fruit during storage at room temperature.

5.
Front Plant Sci ; 13: 1086375, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714761

RESUMEN

Introduction: The loss of postharvest storability of pummelo fruit reduces its commodity value for long run. To maintain its storability, the effects of postharvest dipping treatment by salicylic acid (SA) with different concentrations (0, 0.1, 0.2, or 0.3%) were investigated on pummelo fruit (Citrus maxima Merr. cv. Jinshayou) during the room temperature storage at 20 ± 2°C for 90 d. Results and discussion: Among all treatments, pre-storage SA treatment at 0.3% demonstrated the most significant ability to reduce fruit decay incidence, decrease weight loss, delay peel color-turned process, and inhibit the declines in total soluble solids (TSS) as well as titratable acid (TA) content. The increases in electrolyte leakage, hydrogen peroxide (H2O2), and malondialdehyde (MDA) content of the 0.3% SA-treated pummelo fruit were reduced compared to the control (dipped in distilled water). Pummelo fruit treated with 0.3% SA exhibited the most outstanding ability to excess reactive oxygen species (ROS) accumulation, as evidenced by promoted the increases in glutathione (GSH), total phenolics and flavonoids contents, delayed the AsA decline, and enhanced the activities of antioxidant enzymes and their encoding genes expression. Conclusion: Pre-storage treatment dipped with SA, particularly at 0.3%, can be used as a useful and safe preservation method to maintain higher postharvest storability and better overall quality of 'Jinshayou' pummelo fruit, and thus delaying postharvest senescence and extend the storage life up to 90 d at room temperature.

6.
J Agric Food Chem ; 69(46): 13859-13870, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34779211

RESUMEN

Ethylene can accelerate the postharvest ripening process of kiwifruit, while indole-3-acetic acid (IAA) delays it. However, the molecular mechanism by which ethylene regulates IAA degradation is unclear. Here, we found that ethephon promotes the degradation of free IAA in kiwifruit. Furthermore, ethylene can promote the expression of AcGH3.1 and enhance its promoter activity. Two ethylene response factors (ERFs), AcERF1B and AcERF073, were obtained using an AcGH3.1 promoter as bait for a yeast one-hybrid screening library. Both AcERF1B and AcERF073 bind to the AcGH3.1 promoter to activate it. Also, AcERF1B/073 enhanced AcGH3.1 expression, decreased the free IAA content, and increased the IAA-Asp content in kiwifruit. In addition, we found that the AcERF1B and AcERF073 proteins directly interact, and this interaction enhanced their binding to the AcGH3.1 promoter. In summary, our results suggest that AcERF1B and AcERF073 positively regulate IAA degradation by activating AcGH3.1 transcription, which accelerated postharvest kiwifruit ripening.


Asunto(s)
Actinidia , Regulación de la Expresión Génica de las Plantas , Actinidia/genética , Actinidia/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Plant J ; 102(6): 1220-1233, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31960511

RESUMEN

ß-Glucosidases (BG) are present in many plant tissues. Among these, abscisic acid (ABA) ß-glucosidases are thought to take part in the adjustment of cellular ABA levels, however the role of ABA-BG in fruits is still unclear. In this study, through RNA-seq analysis of persimmon fruit, 10 full-length DkBG genes were isolated and were all found to be expressed. In particular, DkBG1 was highly expressed in persimmon fruits with a maximum expression 95 days after full bloom (DAFD). We verified that, in vitro, DkBG1 protein can hydrolyze ABA-glucose ester (ABA-GE) to release free ABA. Compared with wild-type, tomato plants that overexpressed DkBG1 significantly upregulated the expression of ABA receptor PYL3/7 genes and showed typical symptoms of ABA hypersensitivity in fruits. DkBG1 overexpression (DkBG1-OE) accelerated fruit ripening onset by 3-4 days by increasing ABA levels at the pre-breaker stage and induced early ethylene release compared with wild-type fruits. DkBG1-OE altered the expression of ripening regulator NON-RIPENING (NOR) and its target genes; this in turn altered fruit quality traits such as coloration. Our results demonstrated that DkBG1 plays an important role in fruit ripening and quality by adjusting ABA levels via hydrolysis of ABA-GE.


Asunto(s)
Ácido Abscísico/metabolismo , Frutas/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , beta-Glucosidasa/metabolismo , Diospyros/enzimología , Diospyros/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Licopeno/metabolismo , Solanum lycopersicum/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , beta-Glucosidasa/genética
8.
Sci Rep ; 9(1): 16943, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729411

RESUMEN

Abscisic acid (ABA) is an important regulator of many plant developmental processes, although its regulation in the pistil during anthesis is unclear. We investigated the role of 9-cis-epoxycarotenoid dioxygenase (SlNCED1), a key ABA biosynthesis enzyme, through overexpression and transcriptome analysis in the tomato pistil. During pistil development, ABA accumulates and SlNCED1 expression increases continually, peaking one day before full bloom, when the maximum amount of ethylene is released in the pistil. ABA accumulation and SlNCED1 expression in the ovary remained high for three days before and after full bloom, but then both declined rapidly four days after full bloom following senescence and petal abscission and expansion of the young fruits. Overexpression of SlNCED1 significantly increased ABA levels and also up-regulated SlPP2C5 expression, which reduced ABA signaling activity. Overexpression of SlNCED1 caused up-regulation of pistil-specific Zinc finger transcription factor genes SlC3H29, SlC3H66, and SlC3HC4, which may have affected the expression of SlNCED1-mediated pistil development-related genes, causing major changes in ovary development. Increased ABA levels are due to SlNCED1 overexpresson which caused a hormonal imbalance resulting in the growth of parthenocarpic fruit. Our results indicate that SlNCED1 plays a crucial role in the regulation of ovary/pistil development and fruit set.


Asunto(s)
Dioxigenasas/genética , Flores/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Ácido Abscísico/metabolismo , Dioxigenasas/metabolismo , Etilenos/biosíntesis , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Inmunohistoquímica , Solanum lycopersicum/metabolismo , Fenotipo , Proteínas de Plantas/metabolismo
9.
J Exp Bot ; 70(21): 6305-6319, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31504753

RESUMEN

Abscisic acid (ABA) regulates fruit ripening, yet little is known about the exact roles of ABA receptors in fruit. In this study, we reveal the role of SlPYL9, a tomato pyrabactin resistance (PYR)/pyrobactin resistance-like (PYL)/regulatory component of ABA receptors (RCAR) protein, as a positive regulator of ABA signaling and fruit ripening. SlPYL9 inhibits protein phosphatase-type 2C (PP2C2/6) in an ABA dose-dependent way, and it interacts physically with SlPP2C2/3/4/5 in an ABA-dependent manner. Expression of SlPYL9 was observed in the seeds, flowers, and fruits. Overexpression and suppression of SlPYL9 induced a variety of phenotypes via altered expression of ABA signaling genes (SlPP2C1/2/9, SlSnRK2.8, SlABF2), thereby affecting expression of ripening-related genes involved in ethylene release and cell wall modification. SlPYL9-OE/RNAi plants showed a typical ABA hyper-/hypo-sensitive phenotype in terms of seed germination, primary root growth, and response to drought. Fruit ripening was significantly accelerated in SlPYL9-OE by 5-7 d as a result of increased endogenous ABA accumulation and advanced release of ethylene compared with the wild-type. In the SlPYL9-RNAi lines, fruit ripening was delayed, mesocarp thickness was enhanced, and petal abscission was delayed compared with the wild-type, resulting in conical/oblong and gourd-shaped fruits. These results suggest that SlPYL9 is involved in ABA signaling, thereby playing a role in the regulation of flower abscission and fruit ripening in tomato.


Asunto(s)
Ácido Abscísico/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Solanum lycopersicum/metabolismo , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Proteína Fosfatasa 2C/metabolismo
10.
Plant Cell Physiol ; 59(10): 1956-1965, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29917161

RESUMEN

Although the role of the ethylene response factor (ERF) Pti4 in disease resistance has been demonstrated in higher plants, it is presently unknown whether the tomato SlPti4 protein plays a role in the regulation of fruit development and the stress response. Here, we show that SlPti4 is involved in the regulation of fruit ripening, seed germination, and responses to drought and Botrytis cinerea infection through adjustments to ABA metabolism and signaling. SlPti4 gene expression is very low early in fruit development, but increases rapidly during ripening and can be induced by exogenous ABA and 1-aminocyclopropane 1-carboxylate (ACC). RNA interference (RNAi)-induced silencing of SlPti4 leads to an increase of ABA accumulation together with a decrease of ethylene release, which causes the high expression level of SlBcyc, and thus the transgenic fruit is orange instead of red as in wild-type fruit during ripening. SlPti4-RNAi seeds accumulate less ABA and mRNA for ABA receptor SlPYL genes, which causes insensitivity to ABA treatment. SlPti4-RNAi transgenic plants with low ABA levels and high ethylene release were more sensitive to drought stress. SlPti4-RNAi plants also showed weaker resistance to B. cinerea infection than the wild type. Thus, SlPti4 is an important regulator of tomato fruit ripening, seed germination and abiotic/biotic stress responses. This study expands our knowledge on diverse plant physiologies which are regulated by ABA signaling and the function of SlPti4.


Asunto(s)
Ácido Abscísico/metabolismo , Frutas/metabolismo , Germinación/fisiología , Semillas/metabolismo , Solanum lycopersicum/metabolismo , Aminoácidos Cíclicos/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Germinación/genética , Solanum lycopersicum/genética , Interferencia de ARN , Semillas/genética
11.
Cell Mol Life Sci ; 75(18): 3457-3472, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29632966

RESUMEN

Abscisic acid (ABA) regulates plant growth and development, but the role of ABA in the development of reproductive organs in tomato has rarely been addressed. In the present study, the role of ABA in the regulation of male and female gametogenesis as well as pollen development and germination is tested in tomato. qRT-PCR and in situ hybridization analysis of 9-cis-epoxycarotenoid dioxygenase (SlNCED1), a key enzyme in the ABA biosynthetic pathway, showed high expression of SlNCED1 primarily in the meristem during gametogenesis and mainly in ovule, stigma, anther/pollen and vascular tissues during floral organ development. SlNCED1 expression and ABA accumulation in anther peak at stages 13-14, suggesting that ABA plays a role in the primary formation of pollen grains. Over expression and suppression of SlNCED1 led to the abnormal development of anther/pollen, especially in SlNCED1-OE lines, which have serious pollen deterioration. The percentage of pollen germination in wild type is 91.47%, whereas it is 6.85% in OE transgenic lines and 38.4% at anthesis in RNAi lines. RNA-Seq of anthers shows that SlNCED1-OE can significantly enhance the expression of SlPP2Cs and down-regulate the expression of SlMYB108 and SlMYB21, which are anther/flower-specific transcriptional factors in tomato. Finally, anther transcriptome data indicate that SlNCED1 is involved in ABA-mediated regulation in pollen/anther metabolism, cell wall modification, and transcription levels. These results support an important role for ABA in the development of reproductive organs in tomato and contribute to the elucidation of the underlying regulatory mechanisms.


Asunto(s)
Dioxigenasas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Ácido Abscísico/metabolismo , Dioxigenasas/genética , Etilenos/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/crecimiento & desarrollo , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Polen/crecimiento & desarrollo , Polen/metabolismo , Interferencia de ARN , Transducción de Señal/genética , Factores de Transcripción/metabolismo
12.
Plant Cell Physiol ; 59(1): 142-154, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29121241

RESUMEN

Although ABA signaling has been widely studied in Arabidopsis, the roles of core ABA signaling components in fruit remain poorly understood. Herein, we characterize SlPP2C1, a group A type 2C protein phosphatase that negatively regulates ABA signaling and fruit ripening in tomato. The SlPP2C1 protein was localized in the cytoplasm close to AtAHG3/AtPP2CA. The SlPP2C1 gene was expressed in all tomato tissues throughout development, particularly in flowers and fruits, and it was up-regulated by dehydration and ABA treatment. SlPP2C1 expression in fruits was increased at 30 d after full bloom and peaked at the B + 1 stage. Suppression of SlPP2C1 expression significantly accelerated fruit ripening which was associated with higher levels of ABA signaling genes that are reported to alter the expression of fruit ripening genes involved in ethylene release and cell wall catabolism. SlPP2C1-RNAi (RNA interference) led to increased endogenous ABA accumulation and advanced release of ethylene in transgenic fruits compared with wild-type (WT) fruits. SlPP2C1-RNAi also resulted in abnormal flowers and obstructed the normal abscission of pedicels. SlPP2C1-RNAi plants were hypersensitized to ABA, and displayed delayed seed germination and primary root growth, and increased resistance to drought stress compared with WT plants. These results demonstrated that SlPP2C1 is a functional component in the ABA signaling pathway which participates in fruit ripening, ABA responses and drought tolerance.


Asunto(s)
Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Fosfoproteínas Fosfatasas/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Adaptación Fisiológica/genética , Sequías , Etilenos/metabolismo , Flores/genética , Flores/metabolismo , Frutas/metabolismo , Frutas/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Fosfoproteínas Fosfatasas/clasificación , Fosfoproteínas Fosfatasas/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Interferencia de ARN , Transducción de Señal/genética , Estrés Fisiológico
13.
Plant J ; 91(4): 574-589, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28482127

RESUMEN

Abscisic acid (ABA) glucose conjugation mediated by uridine diphosphate glucosyltransferases (UGTs) is an important pathway in regulating ABA homeostasis. In the present study, we investigated three tomato SlUGTs that are highly expressed in fruit during ripening, and these SlUGTs were localized to the cytoplasm and cell nucleus. Among these three UGTs, SlUGT75C1 catalyzes the glucosylation of both ABA and IAA in vitro; SlUGT76E1 can only catalyze the conjugation of ABA; and SlUGT73C4 cannot glycosylate either ABA or IAA. Therefore, SlUGT75C1 was selected for further investigation. SlUGT75C1 RNA interference significantly up-regulated the expression level of SlCYP707A2, which encodes an ABA 8'-hydroxylase but did not affect the expression of SlNCED1, which encodes a key enzyme in ABA biosynthesis. Suppression of SlUGT75C1 significantly accelerated fruit ripening by enhancing ABA levels and promoting the early release of ethylene. SlUGT75C1-RNAi altered the expression of fruit ripening genes (genes involved in ethylene release and cell wall catabolism). SlUGT75C1-RNAi seeds showed delayed germination and root growth compared with wild-type as well as increased sensitivity to exogenous ABA. SlUGT75C1-RNAi plants were also more resistant to drought stress. These results demonstrated that SlUGT75C1 plays a crucial role in ABA-mediated fruit ripening, seed germination, and drought responses in tomato.


Asunto(s)
Ácido Abscísico/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Glucosiltransferasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Solanum lycopersicum/fisiología , Sistema Enzimático del Citocromo P-450/genética , Sequías , Etilenos/metabolismo , Frutas/citología , Frutas/enzimología , Frutas/genética , Frutas/fisiología , Germinación , Glucosiltransferasas/genética , Solanum lycopersicum/citología , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Modelos Biológicos , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN , Semillas/citología , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Estrés Fisiológico , Uridina Difosfato/metabolismo
14.
J Plant Physiol ; 211: 81-89, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28171801

RESUMEN

The VlMYBA subfamily of transcription factors has been known to be the functional regulators in anthocyanin biosynthesis in red grapes. In this study, the expressions of the VlMYBA1-2 and VlMYBA 2 genes, and the responses of the VlMYBA1-2/2 promoters to ABA and ACC treatments in Kyoho grape berries are examined through quantitative real-time PCR analysis and the transient expression assay. The results show that the expressions of VlMYBA1-2/2 increase dramatically after véraison and reach their highest levels when the berries are nearly fully ripe. Exogenous ABA promotes the expressions of VlMYBA1-2/2, whereas the ACC treatment increases the expression of VlMYBA2, however, it has no effect on VlMYBA1-2. The ABA treatment has a faster and stronger effect on berry pigmentation than ACC does. The VlMYBA1-2 promoter sequence contains two ABA response elements (ABRE) but no ethylene response element (ERE), whereas the VlMYBA2 promoter sequence contains two ABRE and one ERE in the upstream region of the start codon. The VlMYBA2 promoter can be activated by both ABA (more effective) and ACC, whereas the VlMYBA1-2 promoter can be activated by ABA only. In sum, ABA can promote the coloring of Kyoho grape by the promotion of VlMYBA1-2/2 transcriptions via activating the response of their promoters to ABA, whereas ethylene only regulates VlMYBA2 through the response activation of its promoter to ACC which partially enhances the coloring.


Asunto(s)
Ácido Abscísico/farmacología , Aminoácidos Cíclicos/farmacología , Frutas/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Vitis/genética , Antocianinas/metabolismo , Secuencia de Bases , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Fenoles/farmacología , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo
15.
J Plant Physiol ; 205: 67-74, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27626883

RESUMEN

Abscisic acid (ABA) regulates fruit development and ripening via its signaling. However, the exact role of ABA signaling core components in fruit have not yet been clarified. In this study, we investigated the potential interactions of tomato (Solanum lycopersicon) ABA signaling core components using yeast two-hybrid analysis, with or without ABA at different concentrations. The results showed that among 12 PYR/PYL/RCAR ABA receptors (SlPYLs), SlPYL1, SlPYL2, SlPYL4, SlPYL5, SlPYL 7, SlPYL8, SlPYL9, SlPYL10, SlPYL11, and SlPYL13 were ABA-dependent receptors, while SlPYL3 and SlPYL12 were ABA-independent receptors. Among five SlPP2Cs (type 2C protein phosphatases) and seven SlSnRK2s (subfamily 2 of SNF1-related kinases), all SlSnRK2s could interact with SlPP2C2, while SlSnRK2.8 also interacted with SlPP2C3. SlSnRK2.5 could interact with SlABF2/4 (ABA-responsive element binding factors). Expressions of SlPYL1, SlPYL2, SlPYL8, and SlPYL10 were upregulated under exogenous ABA but downregulated under nordihydroguaiaretic acid (NDGA) at the mature green stage of fruit ripening. The expressions of SlPP2C1, SlPP2C2, SlPP2C3, and SlPP2C5 were upregulated in ABA-treated fruit, but downregulated in NDGA-treated fruit at the mature green stage. The expressions of SlSnRK2.4, SlSnRK2.5, SlSnRK2.6, and SlSnRK2.7 were upregulated by ABA, but downregulated by NDGA. However, SlSnRK2.2 was down regulated by ABA. Expression of SlABF2/3/4 was enhanced by ABA but decreased by NDGA. Based on these results, we concluded that the majority of ABA receptor PYLs interact with SlPP2Cs in an ABA-dependent manner. SlPP2C2 and SlPP2C3 can interact with SlSnRK2s. SlSnRK2.5 could interact with SlABF2/4. Most ABA signaling core components respond to exogenous ABA.


Asunto(s)
Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Solanum lycopersicum/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Frutas/genética , Frutas/fisiología , Solanum lycopersicum/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas , Técnicas del Sistema de Dos Híbridos
16.
J Exp Bot ; 66(13): 3765-74, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25956880

RESUMEN

Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1-4) encoding 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development.


Asunto(s)
Adaptación Fisiológica , Sequías , Frutas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Prunus/crecimiento & desarrollo , Prunus/fisiología , Ácido Abscísico/metabolismo , Adaptación Fisiológica/genética , Antocianinas/metabolismo , Desecación , Etilenos/metabolismo , Frutas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de Plantas , Fenotipo , Pigmentación/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Prunus/genética
17.
Plant Physiol Biochem ; 82: 299-308, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25038474

RESUMEN

To investigate the contribution of abscisic acid (ABA) in pear 'Gold Nijisseiki' during fruit ripening and under dehydration stress, two cDNAs (PpNCED1 and PpNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) (a key enzyme in ABA biosynthesis), two cDNAs (PpCYP707A1 and PpCYP707A2) which encode 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA), one cDNA (PpACS3) which encodes 1-aminocyclopropane-1-carboxylic acid (ACC), and one cDNA (PpACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from 'Gold Nijisseiki' fruit. In the pulp, peel and seed, expressions of PpNCED1 and PpNCED2 rose in two stages which corresponded with the increase of ABA levels. The expression of PpCYP707A1 dramatically declined after 60-90 days after full bloom (DAFB) in contrast to the changes of ABA levels during this period, while PpCYP707A2 stayed low during the whole development of fruit. Application of exogenous ABA at 100 DAFB increased the soluble sugar content and the ethylene release but significantly decreased the titratable acid and chlorophyll contents in fruits. When fruits harvested at 100 DAFB were stored in the laboratory (25 °C, 50% relative humidity), the ABA content and the expressions of PpNCED1/2 and PpCYP707A1 in the pulp, peel and seed increased significantly, while ethylene reached its highest value after the maximum peak of ABA accompanied with the expressions of PpACS3 and PpACO1. In sum the endogenous ABA may play an important role in the fruit ripening and dehydration of pear 'Gold Nijisseiki' and the ABA level was regulated mainly by the dynamics of PpNCED1, PpNCED2 and PpCYP707A1 at the transcriptional level.


Asunto(s)
Ácido Abscísico/metabolismo , Frutas/enzimología , Proteínas de Plantas/metabolismo , Pyrus/enzimología , Pyrus/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Pyrus/genética
18.
J Exp Bot ; 65(18): 5243-55, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25039074

RESUMEN

Abscisic acid (ABA) plays an important role in fruit development and ripening. Here, three NCED genes encoding 9-cis-epoxycarotenoid dioxygenase (NCED, a key enzyme in the ABA biosynthetic pathway) and three CYP707A genes encoding ABA 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA) were identified in tomato fruit by tobacco rattle virus-induced gene silencing (VIGS). Quantitative real-time PCR showed that VIGS-treated tomato fruits had significant reductions in target gene transcripts. In SlNCED1-RNAi-treated fruits, ripening slowed down, and the entire fruit turned to orange instead of red as in the control. In comparison, the downregulation of SlCYP707A2 expression in SlCYP707A2-silenced fruit could promote ripening; for example, colouring was quicker than in the control. Silencing SlNCED2/3 or SlCYP707A1/3 made no significant difference to fruit ripening comparing RNAi-treated fruits with control fruits. ABA accumulation and SlNCED1transcript levels in the SlNCED1-RNAi-treated fruit were downregulated to 21% and 19% of those in control fruit, respectively, but upregulated in SlCYP707A2-RNAi-treated fruit. Silencing SlNCED1 or SlCYP707A2 by VIGS significantly altered the transcripts of a set of both ABA-responsive and ripening-related genes, including ABA-signalling genes (PYL1, PP2C1, and SnRK2.2), lycopene-synthesis genes (SlBcyc, SlPSY1 and SlPDS), and cell wall-degrading genes (SlPG1, SlEXP, and SlXET) during ripening. These data indicate that SlNCED1 and SlCYP707A2 are key genes in the regulation of ABA synthesis and catabolism, and are involved in fruit ripening as positive and negative regulators, respectively.


Asunto(s)
Ácido Abscísico/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Interferencia de ARN
19.
Plant Physiol Biochem ; 76: 67-76, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24486581

RESUMEN

Abscisic acid (ABA) is an important phytohormone that regulates lots of physiological and biochemical processes in plant life cycle, especially in seed germination and stress responses. For exploring the transcriptional regulation of ABA signal transduction during cucumber (Cucumis sativus L.) seed germination and under Cu(2+), Zn(2+), NaCl and simulated acid rain stresses, nine CsPYLs, three group A CsPP2Cs and two subclass III CsSnRK2s were identified from cucumber genome, which respectively showed high sequence similarities and highly conserved domains with homologous genes in Arabidopsis. Based on Real-time PCR analysis, most of the tested genes' expression decreased during cucumber seed germination, which was in accordance with the ABA level variation. In addition, according to the absolute expression, CsPYL1, CsPYL3, CsPP2C5, CsABI1, CsSnRK2.3 and CsSnRK2.4 were highly expressed, indicating that they may play more important roles in ABA signaling during cucumber seed germination. Moreover, most of these highly expressed genes, except CsPYL3, were up-regulated by ABA treatment. Meanwhile, most of the tested genes' expression dramatically changed at the initial water uptake phase, indicating that this period may be critical in the regulation of ABA on seed germination. Under Cu(2+), Zn(2+), NaCl and simulated acid rain stresses, cucumber seed germination percentage decreased and ABA content increased. Meanwhile, the expression of ABA signal transduction core components genes showed specific response to a particular stress and was not always consist with ABA variation. Generally, the expression of CsPYL1, CsPYL3, CsABI1, CsSnRK2.3 and CsSnRK2.4 was sensitive to 120 mM NaCl and 0.5 mM Cu(2+) treatments.


Asunto(s)
Ácido Abscísico/metabolismo , Lluvia Ácida , Cobre/química , Cucumis sativus/fisiología , Cloruro de Sodio/química , Zinc/química , Cucumis sativus/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación , Proteínas de Plantas/metabolismo , Semillas/fisiología , Transducción de Señal , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA