Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255509

RESUMEN

The optimal mixing conditions for silica-filled NR compounds dictate the need to proceed at a high temperature, i.e., 150 °C, to achieve a sufficient degree of silanization. On the other hand, natural rubber is prone to degradation due to mechanical shear and thermal effects during mixing, particularly at long exposure times. The present work investigates NR rubber degradation during mixing in relation to prolonged silanization times. The Mooney viscosity and stress relaxation rates, bound rubber content, storage modulus (G'), and delta δ were investigated to indicate the changes in the elastic/viscous responses of NR molecules related to rubber degradation, molecular chain modifications, and premature crosslinking/interaction. In Gum NR (unfilled), an increase in the viscous response with increasing mixing times indicates a major chain scission that causes a decreased molecular weight and risen chain mobility. For silica-filled NR, an initial decrease in the Mooney viscosity with increasing silanization time is attributed to the chain scission first, but thereafter the effect of the degradation is counterbalanced by a sufficient silanization/coupling reaction which leads to leveling off of the viscous response. Finally, the higher viscous response due to degradation leads to the deterioration of the mechanical properties and rolling resistance performance of tire treads made from such silica-filled NR, particularly when the silanization time exceeds 495 s.

2.
Polymers (Basel) ; 15(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36616514

RESUMEN

Mixing silica-reinforced rubber for tire tread compounds involves high shear forces and temperatures to obtain a sufficient degree of silanization. Natural Rubber (NR) is sensitive to mastication and chemical reactions, and thus, silica-NR mixing encounters both mechanical and thermal degradation. The present work investigates the degradation phenomena during the mixing of silica-reinforced NR compounds in-depth. The Mooney stress relaxation rates, the dynamic properties with frequency sweep, a novel characterization of branch formation on NR using Δδ values acc. Booij and van Gurp-Palmen plots, together, indicate two major competitive reactions taking place: chain scission or degradation and preliminary cross-linking or branch formation. For masticated pure NR and gum compounds, the viscous responses increase, and the changes in all parameters indicate the dominance of chain scission with increasing dump temperature. It causes molecular weight decrease, broader molecular weight distribution, and branched structures. Different behavior is observed for silica-filled NR compounds in which both physical and chemical cross-links are promoted by silanization and coupling reactions. At high dump temperatures above 150 °C, the results indicate a significant increase in branching due to preliminary cross-linking. These molecular chain modifications that cause network heterogeneity deteriorate the mechanical properties of resulting vulcanizates.

3.
Polymers (Basel) ; 13(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374236

RESUMEN

The property retentions of silica-reinforced natural rubber vulcanizates with various contents of a self-healing modifier called EMZ, which is based on epoxidized natural rubber (ENR) modified with hydrolyzed maleic anhydride (HMA) as an ester crosslinking agent plus zinc acetate dihydrate (ZAD) as a transesterification catalyst, were investigated. To validate its self-healing efficiency, the molecular-scale damages were introduced to vulcanizates using a tensile stress-strain cyclic test following the Mullins effect concept. The processing characteristics, reinforcing indicators, and physicomechanical and viscoelastic properties of the compounds were evaluated to identify the influences of plausible interactions in the system. Overall results demonstrate that the property retentions are significantly enhanced with increasing EMZ content at elevated treatment temperatures, because the EMZ modifier potentially contributes to reversible linkages leading to the intermolecular reparation of rubber network. Furthermore, a thermally annealing treatment of the damaged vulcanizates at a high temperature, e.g., 120 °C, substantially enhances the property recovery degree, most likely due to an impact of the transesterification reaction of the ester crosslinks adjacent to the molecular damages. This reaction can enable bond interchanges of the ester crosslinks, resulting in the feasibly exchanged positions of the ester crosslinks between the broken rubber molecules and, thus, achievable self-reparation of the damages.

4.
Polymers (Basel) ; 11(8)2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31409053

RESUMEN

Nanoclay-modified polyisoprene latexes were prepared and then used as a reinforcing component in natural rubber (NR) thin films. Starve-fed emulsion (SFE) polymerization gives a higher conversion than the batch emulsion (BE), while the gel and coagulation contents from both systems are comparable. This is attributed to the SFE that provides a smaller average polymer particle size which in turn results in a greater polymerization locus, promoting the reaction rate. The addition of organo-nanoclay during synthesizing polyisoprene significantly lessens the polymerization efficiency because the nanoclay has a potential to suppress nucleation process of the reaction. It also intervenes the stabilizing efficiency of the surfactant-SDS or sodium dodecyl sulfate, giving enlarged average sizes of the polymer particles suspended in the latexes. TEM images show that nanoclay particles are attached on and/or inserted in the polymer particles. XRD and thermal (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)) analyses were employed to assess the d-spacing of nanoclay structure in NR nanocomposite films, respectively. Based on the overall results, 5 wt% of nanoclay relative to the monomer content utilized to alter the polyisoprene during emulsion polymerization is an optimum amount since the silicate plates of nanoclay in the composite exhibit the largest d-spacing which maximizes the extent of immobilized polymer constituent, giving the highest mechanical properties to the films. The excessive amounts of nanoclay used, i.e., 7 and 10 wt% relative to the monomer content, reduce the reinforcing power because of the re-agglomeration effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA