Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(35): 12975-12985, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37625125

RESUMEN

The allergen Mal d 1 is often responsible for adverse allergic reactions to fresh apples in northern and central Europe. The Mal d 1 content and isoallergen profile are proposed to have an impact on the allergenic potential of the fruit. Therefore, we investigated the impact of the cropping system on the Mal d 1 content and the isoallergen profile of apples by mass spectrometry for the varieties 'Jonagored' and 'Topaz'. To monitor the impact of storage time and conditions, apples of the varieties 'Santana' and 'Jonagold' were stored for up to 12 weeks under regular air (RA), under RA in combination with 1-methylcyclopropene (1-MCP) treatment, and under a controlled atmosphere (CA). The impact of the cropping system (integrated production vs organic production) was negligible. However, a significant increase in the Mal d 1 content during storage was observed, being higher when stored under CA conditions than under RA conditions. An additional treatment with 1-MCP prior to RA storage drastically reduced the level of Mal d 1 expression in the flesh of the apples by ∼50%. Furthermore, the content of isoallergens 1.03 and 1.06 increased disproportionately under CA conditions, while under RA conditions, only isoallergen 1.06 was affected. With the 1-MCP treatment, no changes in the isoallergen profile were obvious.


Asunto(s)
Malus , Frutas , Aire Acondicionado , Clima
2.
J Agric Food Chem ; 71(5): 2554-2565, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36696630

RESUMEN

The apple allergy in Northern Europe is a cross-reaction to the birch pollen allergy. No correlation between the allergenicity of an apple variety and the content of the major apple allergen Mal d 1, a homologue to the Bet v 1 allergen in birch, could be found using ELISA, so far. Therefore, an impact of polyphenols and/or differences in the isoallergen profile are discussed. To allow a more detailed analysis of the Mal d 1 content and the isoallergen profile, a mass spectrometric method was applied to investigate differences in the flesh and peel of 10 traditional varieties and 10 commercial breeds. The data revealed often, but not always, lower Mal d 1 contents in traditional varieties grown in orchard meadows, which was more obvious in the flesh. Differences among the peels were less pronounced. A closer look at the individual isoallergens 1.01, 1.02, 1.03, and 1.06 reveals an increased impact of the minor isoallergens 1.03 and 1.06 on the allergenic potential, since commercial breeds like Braeburn, Santana, and Holstein Cox, which are considered to have reduced allergenic potentials, were characterized by low levels of these isoallergens.


Asunto(s)
Hipersensibilidad a los Alimentos , Malus , Antígenos de Plantas , Fitomejoramiento , Alérgenos/química , Betula , Proteínas de Plantas
3.
J Agric Food Chem ; 70(37): 11813-11822, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36074755

RESUMEN

Patients who suffer from birch pollinosis often develop adverse reactions to the consumption of fresh apples due to the structural similarity of the allergens Bet v 1 and Mal d 1 from birch and apples, respectively. A different allergenic potential for Mal d 1 isoallergens is postulated, but approaches to quantify the Mal d 1 isoallergen-specific are missing. Therefore, a bottom-up proteomics approach was developed to quantify Mal d 1 by stable isotope dilution and microHPLC-QTOF analyses. Marker peptides for individual isoallergens (Mal d 1.01-Mal d 1.03 and Mal d 1.06), combinations thereof (Mal d 1.01 + 1.02, Mal d 1.02 + 1.06, and Mal d 1.04 + 1.05), and two global marker peptides, comprising Mal d 1.01 + 1.02 + 1.04 + 1.05 and Mal d 1.03 + 1.06 + 1.07 + 1.08 + 1.09, were identified. By the use of an extraction standard (r-Mal d 1_mut), an optimized protocol for extraction and tryptic digestion of apple proteins was developed, and the variety-specific extraction efficiency was monitored for the flesh and peel of apples. The Mal d 1 contents in flesh and peel of five commercial apple breeds and four apple varieties from orchard meadows were quantified isoallergen-specific.


Asunto(s)
Hipersensibilidad a los Alimentos , Malus , Alérgenos/química , Antígenos de Plantas/química , Humanos , Malus/química , Fitomejoramiento , Proteínas de Plantas/química
4.
J Agric Food Chem ; 70(14): 4407-4417, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35357186

RESUMEN

Health benefits of apple polyphenols for different chronic diseases are postulated. To exert bioactive properties, absorption into the body is required (bioavailability), which is strongly influenced by matrix release (bioaccessibility). For seven apple varieties, in vitro experiments with simulated saliva fluid (SSF) and ex vivo digestion with centrifuged human saliva were conducted. Polyphenol characterization (high-performance liquid chromatography-tandem mass spectrometry) and quantification (high performance liquid chromatography-diode array detection) was related to an aqueous methanolic extraction. A polyphenol release of 63-82% from flesh and 42-58% from peel was estimated. While hydroxycinnamic acid derivatives were released in total, a significant retention was observed for flavanes and flavones. In particular, procyanidins were retained with increasing molecular weight. The data reveal a considerable polyphenol release during the oral digestion; however, differences among the varieties as well as flesh and peel were obvious. Due to negligible differences between both digestion media, the data supported the use of SSF instead of human saliva in further experiments.


Asunto(s)
Malus , Polifenoles , Cromatografía Líquida de Alta Presión/métodos , Ácidos Cumáricos/análisis , Digestión , Frutas/química , Humanos , Espectrometría de Masas , Polifenoles/química
5.
Molecules ; 26(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361808

RESUMEN

Phenolic structures are of great interest due to their antioxidant properties and various postulated benefits on human health. However, the quantification of these structures in fruits and vegetables, as well as in vivo or in vitro experiments, is demanding, as relevant concentrations are often low, causing problems in exactly weighing the respective amounts. Nevertheless, the determination of used concentrations is often a prerequisite for accurate results. A possibility to quantify polyphenol is the use of UV/vis spectroscopy. Therefore, the absorption coefficients of selected phenolic structures were determined in three different solvents relevant for polyphenol research (water/methanol (50/50, v/v), water, and phosphate buffer at pH 7.5). To confirm the values based on weight and to avoid errors due to impurities, hygroscopic effects, and inadequate balance care, the mass concentrations were additionally determined by quantitative NMR (q-NMR). The coefficients presented in this article can help to quickly and easily determine accurate concentrations in a laboratory routine without wasting the often-precious standard compounds.

6.
Methods Protoc ; 4(1)2020 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-33375510

RESUMEN

Mal d 1 is the primary apple allergen in northern Europe. To explain the differences in the allergenicity of apple varieties, it is essential to study its properties and interaction with other phytochemicals, which might modulate the allergenic potential. Therefore, an optimized production route followed by an unsophisticated purification step for Mal d 1 and respective mutants is desired to produce sufficient amounts. We describe a procedure for the transformation of the plasmid in competent E. coli cells, protein expression and rapid one-step purification. r-Mal d 1 with and without a polyhistidine-tag are purified by immobilized metal ion affinity chromatography (IMAC) and fast-protein liquid chromatography (FPLC) using a high-resolution anion-exchange column, respectively. Purity is estimated by SDS-PAGE using an image-processing program (Fiji). For both mutants an appropriate yield of r-Mal d 1 with purity higher than 85% is achieved. The allergen is characterized after tryptic in gel digestion by peptide analyses using HPLC-MS/MS. Secondary structure elements are calculated based on CD-spectroscopy and the negligible impact of the polyhistidine-tag on the folding is confirmed. The formation of dimers is proved by mass spectrometry and reduction by DTT prior to SDS-PAGE. Furthermore, the impact of the freeze and thawing process, freeze drying and storage on dimer formation is investigated.

7.
Foods ; 9(3)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245282

RESUMEN

An inhibitory effect on α-amylase and α-glucosidase is postulated for polyphenols. Thus, ingestion of those secondary plant metabolites might reduce postprandial blood glucose level (hyperglycemia), which is a major risk factor for diabetes mellitus type II. In addition to a previous study investigating structure-effect relationships of different phenolic structures, the effect of anthocyanins is studied in detail here, by applying an α-amylase activity assay, on the basis of the conversion of 2-chloro-4-nitrophenyl-4-O-ß-galactopyranosyl maltoside (GalG2CNP) and detection of CNP release by UV/Vis spectroscopy and isothermal titration calorimetry (ITC). All anthocyanin-3-glucosides showed a mixed inhibition with a strong competitive proportion, Kic < 134 µM and Kiu < 270 µM; however, the impact of the B-ring substitution was not statistically significant. UV/Vis detection failed to examine the inhibitory effect of acylated cyanidins isolated from black carrot (Daucus carota ssp. Sativus var. Autrorubens Alef.). However, ITC measurements reveal a much stronger inhibitory effect compared to the cyanidin-3-glucoside. Our results support the hypothesis that anthocyanins are efficient α-amylase inhibitors and an additional acylation with a cinnamic acid boosts the observed effect. Therefore, an increased consumption of vegetables containing acylated anthocyanin derivatives might help to prevent hyperglycemia.

8.
J Agric Food Chem ; 67(40): 11108-11118, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31496243

RESUMEN

A blood glucose level lowering effect is postulated for polyphenols (PPs), which is in part attributed to the inhibition of α-amylase. To estimate structure-effect relationships, chlorogenic acid (CA), phlorizin (PHL), epigallocatechin gallate (EGCG), epicatechin (EC), and malvidin-3-glucoside (Mlv-3-glc) were used as inhibitors in an enzyme assay, on the basis of the conversion of GalG2CNP by α-amylase. The detection of CNP was performed by UV/vis spectroscopy. The data reveal that the inhibitor strength decreases as follows: EGCG > Mlv-3-glc > EC > PHL ∼ CA. Detection of the substrate conversion by isothermal titration calorimetry supports these results. All PPs showed mixed inhibition, except for CA and EGCG wherein the competitive proportion was predominant. Investigations by saturation transfer difference NMR revealed interaction of PPs with α-amylase prevalently based on interactions with the aromatic or conjugated system. A correlation between the extent of the conjugated system and the IC50 of the PP could be found.


Asunto(s)
Antocianinas/química , Catequina/análogos & derivados , Catequina/química , Ácido Clorogénico/química , Inhibidores Enzimáticos/química , Glucósidos/química , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Florizina/química , Animales , Calorimetría , alfa-Amilasas Pancreáticas/química , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA